“Scalable Distributed Online Machine Learning Framework for Realtime Analysis of Big Data”

Hiroyuki MAKINO, NTT Software Innovation Center
Objective of Jubatus

- To satisfy “Scalable”, “Realtime”, and “Profound analysis” for Big Data.
Use Case: Social stream analysis

- Social stream analysis for marketing research
 - We want to know reputation or mood from their voice.
- Too hard to go over each tweet
 - We need machine learning to classify tweets automatically in realtime.

More than 8000 tweets/sec

Realtime twitter analysis with Jubatus

Classifies into 1600 companies

Demonstration
See you in the poster session
Performance

The number of servers and throughput

- Throughput and **linear scalability**

 Classification Tests: Classifying tweets into 1600 companies automatically

 - Throughput: Classifies all the Japanese tweets (6700 tweets/sec) with **1 server**

- Accuracy and learning time

 - Achieving the accuracy as good as batch processing based learning.

 - 90% accuracy in 1 sec. with 16 servers

SPAM classification task (Dataset: LIBSVM webspam)

* 200,000 features / approx. 30 features (per tweet) = 6,700 tweets/sec.
KEY POINT 1: Jubatus Architecture

- **User process**
 - Implemented using Jubatus client API (C++/Java/Python/PHP/Ruby clients)
 - Acquires input data and sends requests to servers via proxies

- **Proxy process (JubaKeeper)**
 - Relays clients’ requests to servers

- **Server process (JubaServer)**
 - Performs the training and prediction processing, and learning model synchronization
 - Increases performance linearly with the number of servers

- **ZooKeeper process**
 - Manages distributed coordination, such as process alive check and leader selection
KEY POINT 2: MIX technique

- Deterioration in the consistency of data synchronization is considered to be a loss of data to be trained, and it results in a decrease in accuracy.
- MIX technique can increase robustness by exchanging the intermediate results among servers loosely.

MIX technique

MIX calculator
[Calculation for aggregated result based on intermediate results]

MIX Protocol controller
[Regulating aggregated result]

Membership manager
[Leader election, members addition or deletion]
Open Source Software

- **Jubatus OSS website**
 - http://jubat.us
 - Github https://github.com/jubatus/jubatus

<table>
<thead>
<tr>
<th>Supported machine learning engines</th>
<th>Description</th>
<th>Algorithms</th>
<th>Usecases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classification</td>
<td>Classify input data into given categories</td>
<td>Perceptron, Passive Aggressive (PA), Confidence Weighted Learning (CW), AROW, Normal HERD (NHERD)</td>
<td>Spam mail, Twitter classification</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Recommend similar data as input data</td>
<td>Inverted Index, LSH, MinHash</td>
<td>Item recommendation, Advertisement</td>
</tr>
<tr>
<td>Regression</td>
<td>Estimate output value for input data</td>
<td>SVR using PA</td>
<td>Power consumption estimation, Stock price estimation</td>
</tr>
<tr>
<td>Statistics</td>
<td>Calculate statistics data, such as sum, max, min, average, standard deviation, etc</td>
<td></td>
<td>Sensor monitoring, Data anomaly detection</td>
</tr>
<tr>
<td>Graph mining</td>
<td>Extract a centrality and shortest path of the given graph structure</td>
<td>Centrality computation (PageRank), Shortest path search</td>
<td>Social community analysis, Network traffic analysis</td>
</tr>
</tbody>
</table>