How To Create the Google for Earth Data
in the example of NOAA Big Data Project

Rainer Sternfeld
CEO & co-founder
Finding and accessing the right data is really hard

Planet OS Data Discovery makes it easy

Crawl the web and index the most recent data without moving the data itself until you need it
Cloud Platform for Industrial Sensor Networks

Sensor Data Discovery & Exchange
- Search, Exploration
- Visualisation, Analytics
- Data Management
- Marketplace
- APIs

Building with:
- Scala, Akka
- RabbitMQ, Kafka
- HDFS, HBase, Elasticsearch
- Spark, Spark Streaming
- GIS Libraries (raster, geometry)
- Compressed array formats
marinexplore.org — the biggest deployment of Planet OS
43,000+ data streams, 35 organizations, 8,000 users

- Data Discovery
- Raster data, heatmap overlays
- Access with third party applications
- Raster data with quiver plot overlays
- Rich graph visualizations
- Build custom datasets
marineexplore.org

› Marine data website
 Visualising
 Browsing
 Filtering
 Export

› Built with:
 Python/Cython
 RabbitMQ, Celery
 Postgres, PostGIS, Vertica
 GIS Libraries (raster, geometry)
 NumPy
How to make NOAA’s large-scale weather and climate data easily discoverable and machine-readable?

Real-time weather & climate data is a global multi-billion dollar opportunity
NOAA’s Challenge

- Tens of thousands of devices deployed in the ocean, on land, and space
- Critical for the government and industries
- Hundreds scattered web services (FTPs, flat files, THREDDS/OPeNDAP API)
- Data grows 10TB+ per day
- 26,595 NOAA datasets with ISO-19139 metadata
- 4,894 NOAA datasets with OpenDAP interface
So what’s wrong with how it’s done now?

An enthusiastic young researcher starts downloading data to an external HDD connected to his laptop — data keeps coming, external HDDs pile up…

the beard’s getting longer and longer, and when the data is finally downloaded, we have a middle-aged, bored professor
Technical Challenges in the NOAA Big Data Project

• Storing, processing, and indexing spatio-temporal time-series & array data
• Processing data at 10s (100s) of TB/day
• Transporting and processing archives at volumes 10s (100s) of PB
• Disseminating real-time data at latency of minutes
• Indexing 100K+ logical datasets and 100M+ technical datasets/files
• Providing uniform API/export for various data formats/protocols/projections
Potential solutions under consideration

- Indexing spatio-temporal and semantic metadata
- Indexing downsampled remote datasets acquired via OpenDAP and others
- Store chunked array data (MBs) in object store (e.g. Amazon S3)
- Provide on-demand computational infrastructure for analyzing data (e.g. Amazon)
What would make it even better?

• Incremental data compression
• BitTorrent-like data dissemination
• Sending pre-filtered data to consumers (e.g. by area)
• Computations scheduled next to the data storage
• Fast interconnect (10 GBit / Infiniband) and GPUs
• Run analytical scripts (e.g. IPython Notebook, Matlab) to work with array data in the cloud
ALL PUBLIC DATA

DATA EXCHANGE

ENTERPRISE DATA

PLANET OS

DISCOVER

COLLABORATE

VISUALIZE

ANALYZE

3RD PARTY INTEGRATIONS

APIs

MODELS

ALGORITHMS

APPS

ENTERPRISE DATA

ALL PUBLIC DATA

DATA EXCHANGE

ENTERPRISE DATA

DISCOVER

COLLABORATE

VISUALIZE

ANALYZE

3RD PARTY INTEGRATIONS

APIs

MODELS

ALGORITHMS

APPS

DATA EXCHANGE

ENTERPRISE DATA

DISCOVER

COLLABORATE

VISUALIZE

ANALYZE

3RD PARTY INTEGRATIONS

APIs

MODELS

ALGORITHMS

APPS
PLANET OS
We index your world