How Not To Use a Cluster

Petabytes

- Managed 10's of petabytes of POSIX storage
- The goal was to be completely hands off
- How do we let everyone have it their way?
 - Ceph and Gluster support many different types of deployments. Each with their own unique quirks
 - All flash? Sure. All spinning rust? Sure
 - Mix and match? Why not

Tools of the Software Storage Admins

- Bash, Pdsh, rsync, python, C, gdb, chef/salt
- Ask lots of questions before adding more load to the shared cluster
 - You want to write how many TB's?
 - Only read once in awhile you say?
 - You project it probably won't be more than a few TB?

Backing up petabytes

At what point are backups useless? Strategies

- Shift the burden to the client. Can you write twice?
- rsync hell. Works but sometimes hangs the cluster
 - Cron job once per minute? What could go wrong
- geo replication multimaster Still being worked on by Redhat
- How much bandwidth do you have again?
- What's the turnover rate?

Software storage advantages

What does Gluster and Ceph excel at vs traditional?

- Cheap servers
- Near linear throughput scaling
- Big files
- Cost. Invest the savings in engineers to extend it as needed

Software Storage Disadvantages

- Small I/O (stop writing 4KB to the cluster!)
 - Enterprise storage will probably always win here
 - You could add flash but you still pay the network round trip penalty
- Fibre channel support
- Some operations feel slow. Is -I in particular

Distributed Storage Has Unique Challenges

- Who's stomping the cluster?
 - Maybe you should have your own playground
- Small files
- Is -I readdir_plus
- Fan out of NFS vs fuse.
- IO operations pilling up
- One server can take down the cluster?
- Cron job the defragmentation

- Needed tools
 - Central logging
 - Charts
 - Real time stats
 - Distributed SSH

Small Files

<128KB is not optimal Why? Network round trip penalty. NFS mounts with small read and write sizes

Gluster Use cases

- Database Backups Throughput requirements can be challenging
- Write once in awhile, read from 100's of servers. Al training data
- Git?
- 1000's of servers sharing data
- Home directory mounts
- Laptop backups for engineers

Git on Gluster

Git assumes it is on a FS that supports atomic operations. Atomic rename Gluster tries hard but Git can produce a race condition that causes split brain Even with 3 replicas this fails

Rsync and Gluster

cron job once per minute of an rsync job
Runs on NFS Gluster mount
Gluster experiences a problem that hangs the
mounts
rsync piles up on clients and hammers the
cluster when it comes back

The Cluster is 100% Full

I have seen Gluster fill up completely

rm -rf /mnt/gluster/* ?

Someone's files need to get dumped

overboard

Gluster actually recovers well

Retire the Enterprise Storage

Ceph's bread and butter is the rados block device So I can retire my hitachi right?

Not so fast. Depends on your workload
 I decided to do just that at Corporation Service Company
 Target CLI is not easy to script and fairly brittle

Active Active Crashover

Several crashes later we found that LIO (Linux-IO Target) could not handle Ceph's latency. Specifically over Fibre Channel

Mike Christie @ Redhat has taken up the torch to modify LIO's libraries to support Ceph

Questions?