How Not To Use a Cluster
Petabytes

- Managed 10's of petabytes of POSIX storage
- The goal was to be completely hands off
- How do we let everyone have it their way?
 - Ceph and Gluster support many different types of deployments. Each with their own unique quirks
 - All flash? Sure. All spinning rust? Sure
 - Mix and match? Why not
Tools of the Software Storage Admins

- Bash, Pdsh, rsync, python, C, gdb, chef/salt
- Ask lots of questions before adding more load to the shared cluster
 - You want to write how many TB’s?
 - Only read once in awhile you say?
 - You project it probably won’t be more than a few TB?
Backing up petabytes

At what point are backups useless?

Strategies

● Shift the burden to the client. Can you write twice?
● rsync hell. Works but sometimes hangs the cluster
 ○ Cron job once per minute? What could go wrong
● geo replication multimaster - Still being worked on by Redhat
● How much bandwidth do you have again?
● What's the turnover rate?
Software storage advantages

What does Gluster and Ceph excel at vs traditional?

- Cheap servers
- Near linear throughput scaling
- Big files
- Cost. Invest the savings in engineers to extend it as needed
Software Storage Disadvantages

● Small I/O (stop writing 4KB to the cluster!)
 ○ Enterprise storage will probably always win here
 ○ You could add flash but you still pay the network round trip penalty
● Fibre channel support
● Some operations feel slow. ls -l in particular
Distributed Storage Has Unique Challenges

- Who's stomping the cluster?
 - Maybe you should have your own playground
- Small files
- `ls -l readdir_plus`
- Fan out of NFS vs fuse.
- IO operations pilling up
- One server can take down the cluster?
- Cron job the defragmentation

- Needed tools
 - Central logging
 - Charts
 - Real time stats
 - Distributed SSH
Small Files

<128KB is not optimal
Why? Network round trip penalty.
NFS mounts with small read and write sizes
Gluster Use cases

- Database Backups - Throughput requirements can be challenging
- Write once in awhile, read from 100's of servers. AI training data
- Git?
- 1000's of servers sharing data
- Home directory mounts
- Laptop backups for engineers
Git on Gluster

Git assumes it is on a FS that supports atomic operations. Atomic rename
Gluster tries hard but Git can produce a race condition that causes split brain
Even with 3 replicas this fails
Rsync and Gluster

cron job once per minute of an rsync job
Runs on NFS Gluster mount
Gluster experiences a problem that hangs the mounts
rsync piles up on clients and hammers the cluster when it comes back
The Cluster is 100% Full

I have seen Gluster fill up completely

- `rm -rf /mnt/gluster/*`?
- Someone’s files need to get dumped overboard

Gluster actually recovers well
Retire the Enterprise Storage

Ceph’s bread and butter is the rados block device
So I can retire my hitachi right?
 o Not so fast. Depends on your workload
I decided to do just that at Corporation Service Company
Target CLI is not easy to script and fairly brittle
Active Active Crashover

Several crashes later we found that LIO (Linux-IO Target) could not handle Ceph’s latency. Specifically over Fibre Channel
Mike Christie @ Redhat has taken up the torch to modify LIO’s libraries to support Ceph
Questions?