# **GRB** Polarization with RHESSI

Steve Boggs & Wayne Coburn UC Berkeley

X-Ray Polarimetry Workshop SLAC, 9-11 February 2004





#### Compton Scattering Modulation, 100% Polarization



Highly modulated at large angles.

### RHESSI as a γ-Ray Polarimeter

#### Not optimal, but most powerful yet:

- $\sim 20 \text{ cm}^2$  effective area to scatters
- large modulation factor,  $\mu_m{\sim}0.2$
- 4-s rotation many angles measured, systematics smooth out in \_ rotation (more like 1/6 rotation).
- all-sky for GRBs
- detectors loosely grouped decreases modulations by only 5%
- every interaction is sent to the ground, but *no coincidence flag*

**RHESSI Detector Layout** 



#### Scatter Angle Distribution

Count rate S and fractional polarization  $\Pi_s$ :

$$\frac{dS}{d\phi} = \left(\frac{S}{2\pi}\right) \left[1 - \mu_m \Pi_s \cos(2(\phi - \eta))\right]$$

- $\phi$  = scatter angle (relative to sky!)
- $\eta$  = angle of polarization vector
- $\mu_m$  = instrument modulation factor
- 2¢ repeats every 180

Measured amplitude A<sub>m</sub>, binned:



- $A_m$ , S/N<sub>bin</sub> measured
- $\mu_m$  modulation expected for 100% polarization

(Novick 1975, Lei, Dean & Hills 1997)

#### GRB021206

RHESSI, IPN Observations 25-200 keV fluence: 1.6×10<sup>-4</sup> erg cm<sup>-2</sup> Peak flux: 2.9×10<sup>-5</sup> erg cm<sup>-2</sup> s<sup>-1</sup> Localized: 18° off-solar Polarization: Statistics are here.... (Coburn & Boggs, 2003

Nature 432:415.)



## **Polarization Analysis**

- Independent analyses run in parallel
- Identify coincident 2-detector events (more in a minute)
- Energy cuts: > 30 keV in each detector, 0.15-2.0 MeV total
- Scatter angle from direction between detector-detector centers
- Correct each scatter for spacecraft rotation
- Histogram number counts vs. scatter angle





Top: 5-s peak, corrected for spin; expected for nonpolarized GRB Bottom: residual; best-fit modulation

## Correcting for the GRB Lightcurve: Monte Carlo Simulations

Procedure:

- RHESSI mass model developed under CERN GEANT package
- Measured single-event lightcurve (0.15-2.0 MeV) as template
- Used the average GRB spectrum as measured by RHESSI
- Source position provided by IPN
- Assumed an unpolarized source
- Ran  $18 \times 10^9$  photons through the mass model
- Selected det/det events with same cuts as for the real data
- Binned to produce expected scatter-angle distribution for an unpolarized source
- Independent analysis was run in parallel for a sanity check



- No polarization:  $\chi^2 = 83.5$ , 11 d.o.f. strongly ruled out
- Best-fit modulation:  $\chi^2 = 16.9$ , 9 d.o.f. (95%)
- Random chance of modulation:  $< 10^{-8}$ , (> 5.7 $\sigma$  confidence)
- Corresponding polarization: 80 ± 20%
- Largest uncertainty: calibration uncertainty in  $\mu_m = 0.19 \pm 0.04$

• Monte Carlos including polarization – preliminary results at least confirm consistency with our estimated  $\mu_m$ .

### **Background Polarization?**



Appears  $3 \pm 9\%$  polarized, consistent with zero.





#### Conclusions

- We concluded GRB021206 appears to have been an electromagnetically driven outflow too early to make generalizations.
- Measuring γ-ray polarization is becoming a real field of study.
  (Whether we actually measured here it or not....)
- We will continue this work with RHESSI, hoping for more bright GRBs and solar flares.
- Independent confirmation with INTEGRAL will hopefully occur sometime in the next 1-2 years (on another GRB, of course).
- Gamma-Ray polarization an excellent diagnostic.

Since our paper there has been much more theoretical work on this question! (Lyutikov et al. 2003; Granot 2003; Eichler & Levinson 2003; Nakar et al. 2003; Lazzati et al. 2003; Matsumiya & Ioka 2003)

### Begin rebuttal to Rutledge:

Our Reproduction of RF04 Analysis Method

| Data Cut             | RF04<br>#Events | Reproduced<br>#Events |
|----------------------|-----------------|-----------------------|
| 1. Raw Counts        | 85387           | 85392                 |
| 2. Combine F/R Coinc | 83300           | 83305                 |
| 3. Reject 3+ Coinc   | 81034           | 81039                 |
| 4. # 3+ Rejected     | 719             | 719                   |
| 5. 2-Det Coinc       | 8230            | 8231                  |

- small differences likely due to 5-second time window shifts
- faithfully reproduced RF04 method
- substantial differences to the method of CB03

## Eventlist → Modulation: Not Trivial Exercise

| CB03                                                                        | RF04                                                   |
|-----------------------------------------------------------------------------|--------------------------------------------------------|
| 1. 0.15-2 MeV photons                                                       | 0.15-2 MeV interactions                                |
| 2. 4 bus coincidence window                                                 | 5 bus coincidence window                               |
| 3. Coincidences found all energies                                          | 0.15-2 MeV initial interaction cut                     |
| 4. 30 keV min threshold for photons                                         | 0.15 MeV minimum threshold                             |
| 5. Track Front/Rear coincidences                                            | Combine F/R coincidences                               |
| 6. Reject double F/R coincidence                                            | Include double F/R coincidence                         |
| 7. Correct RHESSI energy calibration                                        | Obsolete energy_band function                          |
| 8. Cut on total energies (0.15-2 MeV)                                       | No cut on total energies                               |
| 9. Measure scatter/chance coinc rate                                        | Poisson statistics arguments                           |
| 10. Follow charged particle, transistor reset flags                         | Ignore                                                 |
| 11. Reject ambiguous coincidences                                           | Single interactions in multiple events                 |
| 12. Modulation relative to simulated<br>'null' 0% polarization distribution | Modulation relative to chance coincidence distribution |

Coincidence Spectra: RF04 throw out signal below 0.4 MeV, where RHESSI is most sensitive!





## RF04 "Duplication" of CB03

| Data Cut             | RF04<br>#Events | Reproduced<br>#Events |
|----------------------|-----------------|-----------------------|
| 1. Raw Counts        | 85387           | 85392                 |
| 2. Combine F/R Coinc | ?               | 83208                 |
| 3. Reject 3+ Coinc   | ?               | 79266                 |
| 4. # 3+ Rejected     | 1272            | 1261                  |
| 5. 2-Det Coinc       | 10948           | 10958                 |

• RF04 use 8bµs coincident window (CB03 use 4 bµs)

- RF04 use 150 keV- 2 MeV interactions (CB03 use total energy)
- RF04 include 3+ detector coincidences scatter angle undefined

Modulation relative to what?

CB03: 0% polarization distribution (GEANT3 w/ RHESSI mass model)

RF04: distribution from singles, weighting each detector pair equally



#### Predictions of RF04 Analysis w/ CB03 Data Cuts

| Data Cut               | Predicted |
|------------------------|-----------|
|                        | #Events   |
| 1. Raw Counts          | 148209    |
| 2. Combine F/R Coinc   | 143093    |
| 3. Reject 3+ Coinc     | 137551    |
| 4. # 3+ Rejected       | 1764      |
| 5. 2 Detctor Coinc     | 17144     |
| 6. Photon Energy Range | 15684     |

•4bµs coincident window, 30 keV threshold, 0.15-2 MeV photon energy

- More coincident events than CB03!
- Several logical and technical problems in the analysis method
- CB03 Method using RF04 Data Cuts: 4938 coincidence events