

XPE: X-Ray Polarimetry **Explorer**

Exploring Light's Final Frontier

Simple, dedicated, Small Explorer. to investigate X-ray polarization

Principal Investigator Dr. Martin C. Weisskopf: NASA/MSFC Co-Investigators

Ms. Mitzi L. Adams, Dr. Ronald E. Elsner, Dr. Stephen L. O'Dell, Dr. Brian D. Ramsey, Dr. Allyn F. Tennant; NASA/MSFC Prof. Gordon Garmire, Dr. Christopher Palma, Dr. George G. Pavlov, Penn State University Dr. Jorge Paez, University of Costa Rica Collaborators

Dr. Jeremy Heyl; Smithsonian Astrophysical Observatory Prof. Steven Kahn, Prof. Mal Ruderman; Columbia University Prof. Peter Mészáros; Penn State University Prof. Roger Romani; Stanford University Prof. Rashid Sunyaev; Max Planck Institute for Astrophysics

Dr. Kinwah Wu; University College London

A proposal to NASA in response to

40-03-055-02

<u>XPE</u>

P.I. Martin Weisskopf / MSFC Co.ls. NASA/MSFC

Penn State University

University of Costa Rica

Collaborators

SAO

Columbia University

Stanford University

Max Planck Institute

University College London

XPE (SMEX) Design Considerations

- Simple, low-risk design
 - No moving instrument parts
 - No deployables
 - Compact
 - Inexpensive
- Proven principles
 - Thomson scattering
- Proven technology
 - Detector system with flight heritage
- Low energy operation
 - Take advantage of higher source fluxes

These considerations lead us to a large-area scattering polarimeter consisting of a passive scatterer surrounded by a detector to register the position and energy of the scattered photon

(SMEX) Design Considerations

- Scatterer
 - Low Z material (maximize scattering to photolelectric cross section ratio)
 - Relatively easy to fabricate
 - Beryllium
 - Geometry to optimize modulation factor
 - Maximize chance of interaction and subsequent exit from scatterer
 - Various geometries investigated
 - » Truncated cone chosen

(SMEX) Design Considerations

- Detector requirements
 - High efficiency in energy range
 - Large area
 - Position sensitive
 - Low background
 - Flight heritage
 - Choose an annular xenon-filled proportional counter to surround the scatterer.

Marshall Space Flight Center

Item	Detail	
Annular Proportional Counter		
Height	40 cm	
Diameter (inner, outer)	72, 76 cm	
Fill gas	Xenon + quench	
Pressure	2.10 ⁵ Pa	
Entrance Window	2.3 mm Be	
Scattering Cone		
Material	Be	
Diameter (inner, outer)	9, 60 cm	
Height	40 cm	
Thickness	3 cm	
Collimator		
Material	Ti	
Thickness	5 cm	
Field of View	3°	
Transparency	75%	
Shielding		
Material	Pb	
Thickness	0.25 mm	
System Performance		
Energy Range	7-27 keV	
Time Resolution	0.25 msec	
Energy Resolution @ 10 keV	$\sim 15\%$ FWHM	
Effective Collecting Area @ 15 keV	$\sim 200 \text{ cm}^2$	

Item	Mass [kg]
Annular Proportional Counter	
Outer cylinder (SS) and flanges	33.3
Inner cylinder (Be) and flanges	20.4
Top flange	13.8
Lead shielding	3.7
Beryllium Cone Scatterer	
Beryllium cone	22.2
Support ring	0.8
Assembly	24.4
Electronics	
Digital electronics and boxes	6.4
Analog electronics and boxes	12.3
Cables and connectors	1.5
Support Frame	
Assembly (composite)	26.1
Monitor Counter	
Assembly	1.2
Total	166.1

Item	Power [Watts]	
APC/MPC Detector Electronics		
Preamplifiers and shapers	0.7	
Peak-hold & Summing circuits	3.5	
Trigger circuits & A/D	3.0	
Command and Data Subsystem:		
Internal control interfaces	1.0	
CPU/Memory	3.5	
Spacecraft Interfaces	1.0	
Housekeeping signal conditioning	2.5	
High-Voltage Power Supplies		
APC Detector (odd)	2.5	
APC Detector (even)	2.5	
MPC Detector	2.5	
@ 75% power conversion efficiency	30.3	
Contingency @ 15%	4.5	
Total	34.8	

Marshall Space Flight Center

Modulation factor (top) and overall efficiency (bottom) of XPE

XPE Core Observing Program

Representative sample from various classes of sources

Radio pulsars (isolated, rotation-powered neutron stars) convert rotational energy to ultrarelativistic-particle energy and radiation. Electromagnetic cascades in the very strong (up to 10^{13} G) magnetic field result in a rotating beam of relativistic particles and radiation.

Soft Gamma-ray Repeaters (presumably isolated, magnetic-powered neutron stars) convert magnetic stress ultimately into high-energy radiation and outflow. SGRs and Anomalous X-ray Pulsars (AXPs) may be magnetars, with extremely strong (10¹⁴⁻¹⁵ G) magnetic fields.

Pulsating X-ray binaries (accretion-fed neutron stars) channel and convert kinetic energy into X-ray emission at the stellar surface. Rotation and accretion-flow anisotropy, in very strong magnetic fields (10^{12-13} G), modulate the X rays.

Galactic accretion-disk systems (accretion-powered neutron stars or black holes) convert kinetic energy into X-ray emission in the disk. Polarization of accreting binaries with a low-field neutron star or black hole results mainly from scattering.

Galactic superluminal sources (disk–jet sources) convert kinetic energy of accreted material into X radiation and jets of relativistic plasma. Such microquasars lie in an interacting binary containing a (stellar) black hole.

Active Galactic Nuclei (disk-jet sources) convert kinetic energy of accreted material into X radiation and jets of relativistic plasma near the central supermassive (up to $10^9 M_{\odot}$) black hole.

Name	Type of source	Time (d)	MDP (%)
Crab Pulsar	radio pulsar	29.6	3
Crab Nebula	supernova remnant		0.1
SGR 1900+14	burst active	1	3
4U1636-53	burster	9	3
GS1826-238	clocked burster: persistent	4.3	3
J1808.4-3658	accreting millisecond pulsar	9.1	3
J1751-305	accreting millisecond pulsar	10.3	3
Her X-1	accreting pulsar	0.5	1.9
Cen X-3	accreting pulsar	0.5	1.4
4U0900-40	accreting pulsar	0.5	2.4
GX 1+4	accreting pulsar	0.5	2.1
SMC X-1	accreting pulsar	3.2	3
4U1538-52	accreting pulsar	10.4	3
4U0115+63	accreting pulsar	0.5	2.4
OAO1657-41	accreting pulsar	4	3
4U1626-67	accreting pulsar	1.3	3
Cyg X-3	4.8-h binary	1	3
4U1822-37	accreting disk corona	8.3	3
Sco X-1	quasi-periodic oscillator	0.5	0.6
Cyg X-2	quasi-periodic oscillator	0.5	2.8
GX 5-1	quasi-periodic oscillator	0.5	2
Cir X-1	quasi-periodic oscillator	0.5	2
Cyg X-1	black-hole candidate	0.5	0.9
J1744-28	busting pulsar: high state	0.5	0.6
GRS 1915+105	microquasar: high state	0.5	0.4
J1655-40	microquasar: high state	0.5	1.8
Cen A	active galactic nucleus	16.2	3
NGC 4151	active galactic nucleus	24.8	3

XPE Core Observing Program

- Core program is a survey of different source classes at 3% MDP or better
- Crab observation 3% MDP in each of 10 phase bins
- Program completed in ~
 7.5 months (including slews)
- Leaves ~ 16.5 months for follow-on observations

XPE Final Thoughts

- Costs
 - Even a very simple, low-risk instrument still took the full \$120M available ! (how does anyone do anything more complicated ?)
- Outcome of proposal
 - Rated category 2
 - Many major strengths, <u>but one major weakness</u>: "low-brightness sources will be below sensitivity of XPE....Observing program limited by sensitivity of instrument (only 2 AGN accessible [at 3% MDP level.])"
- The Future (for XPE)
 - Unfortunately, as sensitivity goes as the square root of everything that we can adjust, it is hard to see how XPE can be significantly improved