X-ray & γ-ray Polarization in Gamma-Ray Bursts

Jonathan Granot

Institute for Advanced Study, Princeton

X-ray Polarimetry Workshop KIPAC, February 10, 2004

Outline of the Talk:

 Short Overview of GRBs
 Why is GRB polarization interesting
 GRB polarization: an unresolved relativistic jet
 Polarization of the prompt γ-ray emission: theoretical expectations (relatively in detail)
 Polarization of early X-ray afterglow (brief)
 Conclusions

Schmidt 1978; Fenimore et al. 1993; Woods & Loeb 1995;...)

Observations: Afterglow

 X-ray, optical & radio emission over days , weeks & months, respectively, after a GRB
 Spectrum: consists of several power law segments

& is well fit by synchrotron emission

Why is GRB Polarization Interesting

- It teaches us about the magnetic field structure in the GRB ejecta & provides clues as to whether most of energy is in **Poynting flux** or **kinetic energy**:
- E_{EM} ≫ E_{kin} ⇒ ordered magnetic field is expected
 E_{kin} _ E_{EM} ⇒ ordered & random fields are possible
 Provides a strong test for the structure of GRB jets, both in the prompt GRB & in the afterglow
 Probes magnetic field structure behind afterglow shock
- Helps pin down cause of time variability in afterglows

Polarization of Synchrotron Emission

- V linear polarization perpendicular to the projection of B on the plane of the sky
- The maximal polarization is for the local emission from an ordered **B**-field: $P_{max} = (\alpha+1)/(\alpha+5/3)$ where $F_v \propto \sqrt{-\alpha}$, $-1/3 \leq \alpha - 1.5 \Rightarrow 50\% \leq P_{max} - 80\%$ (Rybicki & Lightman 1979; Granot 2003)

Shock Produced Magnetic Field:

A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be **tangled within the plane of the shock** (Medvedev & Loeb 1999)

Polarization in the observer frame

Random field in shock plane

Ordered field in shock plane

Sari 99; Ghisellni & Lazzati 99

 $\mathbf{P} \sim \mathbf{P}_{\max}$

Polarization of Prompt \gamma-ray emission: GRB 021206 $P = 80\% \pm 20\%$ (Coburn & Boggs 2003) Extremely bright GRB, 18° from the sun \Rightarrow favorable for measuring polarization with RHESSI

However: this result is **controvertial** Rutledge & Fox (2003) claim: A factor of ~10 less relevant photon scattering events in the detector \Rightarrow P cannot be constrained

There is an ongoing controversy (stay tuned for the next two talks)

60

300

240

Polarization of prompt γ-ray emission: Theoretical Expectations
Shock produced B-field + θ_{obs} _ θ_j-1/Γ ⇒ P ≈ 0
P ~ P_{max} can be achieved in the following ways:
(1) ordered magnetic field in the ejecta,
(2) special geometry: θ_j < θ_{obs} _ θ_j+1/Γ ⇒ narrow jet: θ_j _ 1/Γ (works with a shock produced magnetic field)

Ordered Magnetic Field in the Ejecta:

Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \theta_i + 1/\Gamma$
- v A reasonable probability for such $θ_{obs} \Rightarrow Γθ_j_a$ few
- v Since $\Gamma_{100} \& \theta_{j} 0.05$, $\Gamma \theta_{j} 5$ and is typically larger
- However GRB 021206 was very bright, suggesting a very narrow jet: $f = 1.6 \times 10^{-4}$ erg which for $z \sim 1$ implies $E_{iso} \sim 10^{54}$ erg & $\theta_i \sim (10^{51} \text{erg}/E_{iso})^{1/2} \sim 0.03$ (Frail et al. 01)
- $v \implies \Gamma \theta_j \sim 3(\Gamma/100) \implies \Gamma \theta_j a \text{ few is possible (Waxman 03)}$
- The jet must have sharp edges: $\Delta \theta_j / \frac{1}{4\Gamma}$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)
- Most GRBs are viewed from θ_{obs} < θ_j and are expected to have a very low polarization in this scenario

v $\Delta \Gamma \sim \Gamma$ between different shell collisions (different pulses in GRB light curve) reduces P by a factor ~ 2

		Ordered Field	Narrow Jet
P ~	80%	X	X
P ~	50%	\checkmark	X
P ~	25%	with $\mathbf{B}_{rnd} - \mathbf{B}_{ord}$	\checkmark
P _	10%	with $B_{rnd} > B_{ord}$	with $B_{rnd} _ B_{\perp}$
stat	istics	High P in all GRBs	low P in most GRBs
Op fl	tical ash	High P - similar to the prompt GRB	Similar to prompt GRB (low P in most GRBs)
Pot prol	ential blems	Some B _{rnd} required for Fermi acceleration	$\Gamma \theta_j$ a few, Δ $\Gamma \sim \Gamma$, B _{rnd} (afterglow obs.)

6

 T/T_1

0.4

0.3

0.2

0.1

10

0

5

10

15

 T/T_1

20

25

30

in shock plane:

0.4

0.3

0.2

0.1

o

2

Position Angle in Different Pulses:

In the internal shocks model, the polarization position angle θ_{p} is expected to remain constant between different pulses in the GRB light curve, both for B_{ord} or narrow jet+shock produced field For the external shocks model θ_{p} is expected to vary between different the pulses

Alternative to Synchrotron: Compton Drag (Bulk Inverse Compton Scattering of External photons)

(Lazzati et al. 2003; Dar & De Rujula 2003, Eichler & Levinson 2003)

- Requires a special geometry and/or viewing angle, $\theta_j < \theta_{obs} = \theta_j + 1/\Gamma$
- Similar polarization properties as a shock produced Bfield with one relative advantage: the local polarization $P=(1-\cos^2\theta)/(1+\cos^2\theta)$ can reach up to 100% while $P_{max} \sim 70\%$ for synchrotron
- Shares drawbacks of shock produced field + narrow jet
- It has additional problems, unrelated to polarization:
 - Explaining the prompt GRB spectrum
 - Supplying external photons for all the ejected shells
 - High photon density \Rightarrow small radii \Rightarrow high $\tau_{\gamma\gamma}$

Conclusions:

- **Ordered magnetic field** in the ejecta naturally produces $P \sim 30\%-65\%$, for all GRBs (all θ_{obs}) & reverse shock
- P should increase with the spectral index α ($F_v \propto v^{-\alpha}$)
- Narrow jet + shock produced B-field or Compton drag naturally produce P~20%-30% for $\theta_j < \theta_{obs} - \theta_j + 1/\Gamma$ but for most GRBs $\theta_{obs} - \theta_j$ and P ≈ 0
- v The temporal evolution of P within a single pulse can help distinguish between ordered B-field & a shock produced B-field or Compton drag
- **v** The pol. **position angle** θ_p in different pulses can help distinguish between **internal** & **external** shocks
- ∨ Polarization measurements in early X-ray afterglow can test the GRB jet structure & the possible role of ordered magnetic field component: $P(t \ll t_{jet}) \sim$