Using Multilayer Optics to Measure X-ray Polarization

Herman L. Marshall (MIT CSR) and E. Silver, H. Schnopper, S. Murray (SAO), M. Weisskopf (MSFC)

Background: an Attempt to Measure EUV Polarization - I

- Used Extreme Ultraviolet Explorer (EUVE)
- Deep Survey telescope graze angles were 5-10°, so reflectivity is polarization-sensitive
- DS focal surface is not planar, so off-axis images have shape of aperture
- Predicted modulation factor: 4%
- Observed PKS 2155-304 for 200,000 s, getting 100,000 events

Background: an Attempt to Measure EUV Polarization - 2

• The BL Lac image differs from the WD image

- Differences are not due to polarized flux
- Uncalibrated systematic errors dominate
- Motivation to design experiment for soft X-ray polarimetry

PKS 2155-304

Difference Image

Marshall et al. 2001

0

5'

A Soft X-ray Polarimeter

Designed as a polarimeter from outset

- Mirror angle of incidence centered at 45°
- Use multilayer coatings to improve reflectivity in X-ray band
- Chose 250 eV to use common successful multilayer combinations
 - ISM optical depth < I for $N_H < 3 \times 10^{20} \mathrm{cm}^{-2}$
 - Maximizes photon flux: $R \propto \delta E n_E \propto f E^{-\Gamma+1}$
- 3rd generation: image portions of a 3 mirrors using 3 detectors

Scientific goals

- Measure AGN polarizations to ± 1% drives bandpass, area
- Determine PSR polarization variation with pulse phase drives timing
- Observe 50-200 targets in 1-3 yr drives area

Proposed as University Explorer (UNEX)

- Cost cap was \$13M, including launch
- Proposed (then) free Shuttle launch with Spartan carrier
- Awarded technology development funding

Multilayer Physics

- s Multilayer coatings are crude crystals
 - Bragg equation gives bandpass peak: $\lambda = 2d\cos\theta$
 - d is multilayer spacing (2 or more layers)
 - θ is angle of incidence

• Interface roughness (2-5 Å) is important

- Reflectivities are well modelled
- Feasible peak energy limited to < I keV

Multilayer Measurements

- Excellent multilayers have been deposited
- Models of reflectivities match observations

From CXRO web site, Windt et al.

Material	d (Å)	N	Angle	E	R	dE	Ref.
Ni/C	48	20	45°	180 eV	18%	9 eV	Yamamoto
Mo/B4C	49	100	45°	185 eV	23%	2 eV	Yamamoto
Ru/B4C	49	100	43°	185 eV	19%	2 eV	Yamamoto
	21.6	75	15°	277 0/	100/	4 ~\/	Diotoph
	01.0	10	-10	211.01	1070	+ 0 V	Dictoon
Co/C	30	41	47°	282 eV	12%	7 eV	Grimmer
	20	75	400	451 eV	5.9%	9 eV	Crimmer
Ni/V	17	150	44°	510 eV	6.8%	3 eV	Grimmer
Cr/Sc	16	300	2.5°	390 eV	6.9%	1.2 eV	Windt
W/B4C	18.	300	2.5°	690 eV	0.25%	0.3 eV	Windt

Optics Layout — I

- Mirrors are paraboloidal sectors
 - One bounce system improves reflectivity
- 45° mirror reflection angles
 - Maximizes modulation factor
 - Instrument is compact

Detectors are simple, need only 0.1 mm spatial and no spectral resolution

Optics Layout — 2

- PLEXAS
 Mirror assemblies divided into 4 x 10° segments
 - Each assembly has a dedicated detector
 - Mirror/detector combinations are optically identical, F = 0.33 m
 - Mirror segments are imaged independently
 - Polarization modulation improves from 70% to 90%
 - Robust to pointing direction
 - Internal background is low, comparable to diffuse X-ray background

Detailed Multilayer Design

Use C/Ni Multilayer

- Spacing (d) is 30-40 Å
- dC/d = 0.6
- Modulation factor \neq f(E)
- Interfaces are stable
- C/W and C/Co are also OK
- Include Interface Roughness of 5 Å
 - ML coatings from SAO facility are this good
 - Peak reflectivity decreases x2 from no roughness case

System Effective Area

- Final bandpass includes other effects
 - ML spacing changes along mirror surface based on sputterer distance
 - Lexan/Al filter blocks UV and optical light
- High orders are negligible

System Layout

- Interfaces are simple
- Star tracker added for better attitude reconstruction
- Redundant telescopes
- <u>3 Stokes parameters can</u> <u>be measured at once</u>
- Rotate to remove systematic effects

Sample 90^d Observing Plan

PLEXAS

Category	Example	Cnt Rate	Exposure	Meas. uncert.	MDP	# visits
		cnt/s	(day)	(%)	(%)	(in 3 mon)
Pulsar	Her X-1	0.65	0.5	1.21	6.1	4
Pulsar	Vela	0.1	5	0.98	4.9	1
BL Lac	PKS 2155-30	1.3	0.5	0.86	4.3	6
BL Lac	Mkn 421	0.8	0.5	1.09	5.5	6
BL Lac	Mkn 501	0.11	1	2.08	10.4	3
BL Lac	1H1023	0.14	1	1.84	9.2	3
AGN/Quasar	Mk 478	0.25	1.5	1.13	5.6	4
AGN/Quasar	3C 273	0.2	2	1.09	5.5	10
AGN/Quasar	NGC 5548	0.14	3	1.06	5.3	10
AGN/Quasar	1H0419-577	0.17	3	0.97	4.8	3
WD	HZ 43	3.5	0.3	0.67	3.4	3
WD	WD 1502	0.9	0.7	0.87	4.3	3
WD	Sirius	0.63	1	0.87	4.3	3

Science Goals (abridged)

- Quasars: discriminate between jets and disks in quasar core
 - Pulsars: determine pulsar B-field geometry, model NS radius with better atmospheres

X-rays from Radio Jets

NRAO web site

Development Status

15

Polarization source built at SAO

- Output is nearly 100% polarized
- PLEXAS concept is validated in principle
- UNEX program is gone
 - Add as Mission of Opportunity?
 - Attach to Space Station?

Emily Laubacher (SAO summer intern) works on the polarization source.

Summary

- A Polarimeter for Low Energy Astrophysical Sources (PLEXAS) is feasible
 - Simple design, low cost and weight
 - Technology is robust and proven to work
- Science potential is wide-ranging
 - Test models of BL Lac jets
 - Test origin of X-rays from quasar cores
 - Discover pc-scale jets in quasar cores
 - Test for rotation of polarization around quasar black holes
 - Measure propagation of light in high B and high g
 - Improve models of neutron stars atmospheres
 - Radius estimates and equation of state depends on atmosphere models
- Looking for (NASA?) development program — good match for 2-20 keV polarimeters