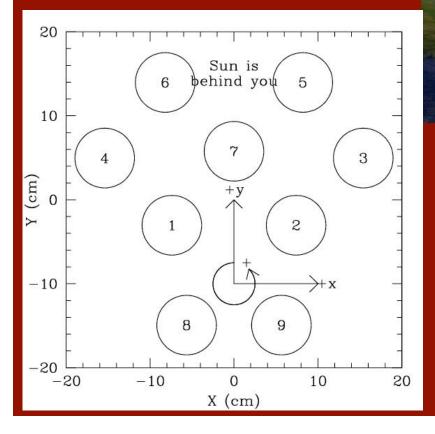
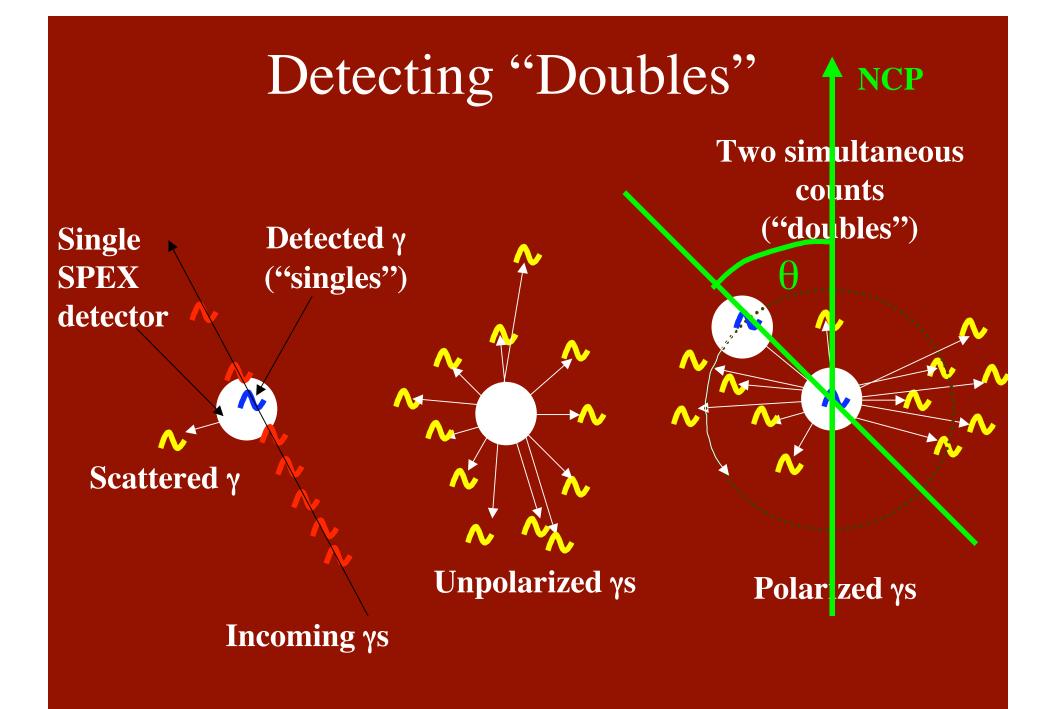
Re-Analysis of γ-ray Polarization in GRB 021206

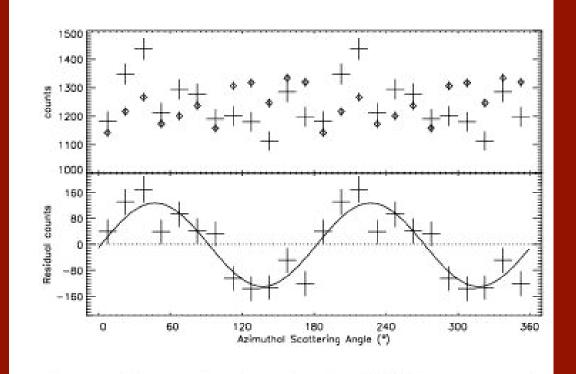

R. E. Rutledge (McGill)D. B. Fox (Caltech)MNRAS, in press; astro-ph

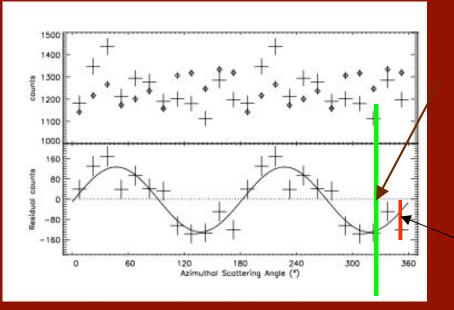
History of observations and implications

- Discovery (1972)
- Homogeneity and Isotropy (Meegan et al 1992): A Cosmological Population.
- Optical afterglows (van Paradijs et al 1997), a high-z emission line (Metzger et al 1997)
- Achromatic Breaks in the afterglow lightcurves--> Jets (e.g. Frail et al)
- Association with SNe (lightcurves: Bloom 1999; spectra: Hjorth, Stanek 2003).
- γ-ray polarization (Coburn & Boggs 2003)
- First detection of γ -ray polarization in any celestial source.
 - A direct probe of evolutionary relativistic MHD, with implications for the formation of magnetic fields in astrophysical jets and shock fronts; in B-field generation in SNe ejecta; and perhaps at the site of the SNe itself. In turn, implications for B-field generation in SNe, providing direct physics input for SNe simulations (would affect mixing and nucleosynthesis); B-field generation in proto-neutron stars and in NSs themselves for which we have only poor observational constrains.


None of the reported X-ray emission lines are significant Sako, Harrison & RR (2004), submitted.

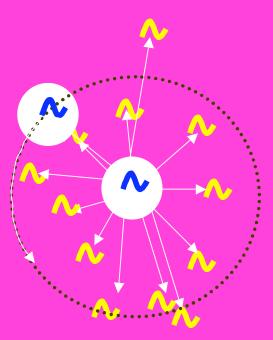
RHESSI SPEX Detectors



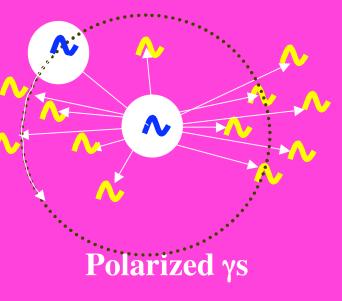

- Nine geometrically identical Ge detectors in a plane.
- spacecraft rotates P~4 sec
- γ s time-tagged in ~1 bµs

Method of Cobrun & Boggs 2003 (CB03)

- Observed $D(\theta)$.
- Monte Carlo simulation: using the observed singlecount events and a GEANT mass model and radiative transfer, found $D_{null}(\theta)$ assuming a nonpolarized beam.

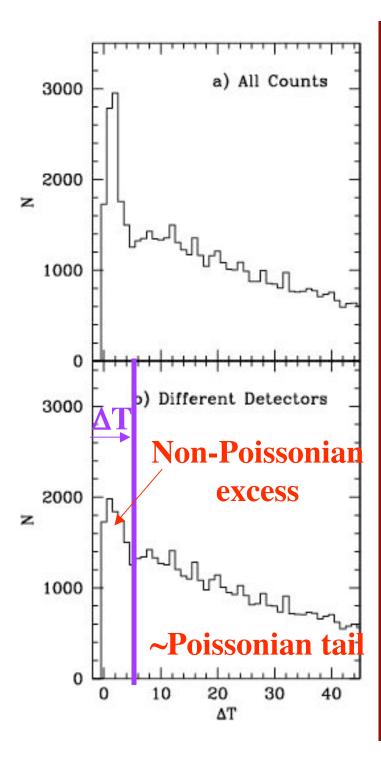

20% error bar (cf. with μ) Method of CB03

9% magnitude of modulation


- Assumption of CB03: systematic uncertainty in $D_{null}(\theta) \ll$ statistical uncertainty in D(θ) (3%). This is not credible.
- To calculate $D_{null}(\theta)$:
 - The fraction of Singles which produce Doubles
 - The fraction of Doubles which only scattered once, and did not interact with passive material.
- Does not account for:
 - Atmospheric scattering?
 - Non gamma-ray background (bunches)?
- Modulation factor μ =0.19±0.04 (20% uncertainty).

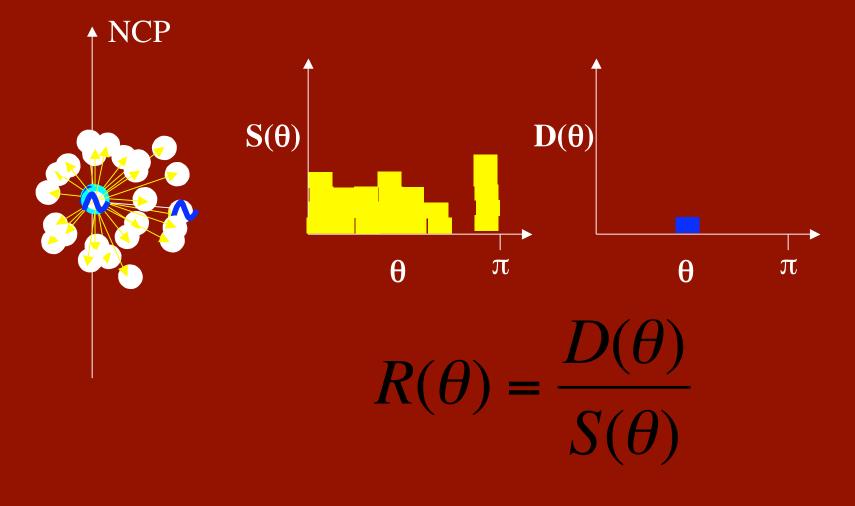
Polarization Detection Without Monte Carlo Simulations: The Doubles/Singles Ratio

$$\begin{split} N_{i,j}(t) &= N_i(t)B_{i,j} + N_j(t)B_{j,i} \\ N_{i,j}(\theta_{i,j}(t)) &= \left[N_i(\theta_{i,j}(t))B_{i,j} + N_j(\theta_{i,j}(t))B_{j,i}\right]I_p(\theta_{i,j}) \\ I_p(\theta) &= \frac{1 + p\cos(2(\theta - \theta_p)))}{1 + p} \\ N_{i,j}(\theta_{i,j}(t)) &= \left[N_i(\theta_{i,j}(t)) + N_j(\theta_{i,j}(t))\right]B_{i,j}I_p(\theta_{i,j}) \\ R(\theta) &= \frac{N_{i,j}(\theta_{i,j})}{N_i(\theta_{i,j}) + N_j(\theta_{i,j})} = CI_p(\theta_{i,j}) \end{split}$$



Unpolarized γs

Ex Angle =		Polarized	γS ngle = 90°
Singles	5000	Singles	2000
Doubles	3000	Doubles	200
$D(0^{\circ})/S(0^{\circ})=0.60\pm0.03$		$D(90^{\circ})/S(90^{\circ})=0.10\pm0.007$	


Limiting uncertainty in $D(\theta) / S(\theta)$ is Poisson.

What is "Simultaneous"?

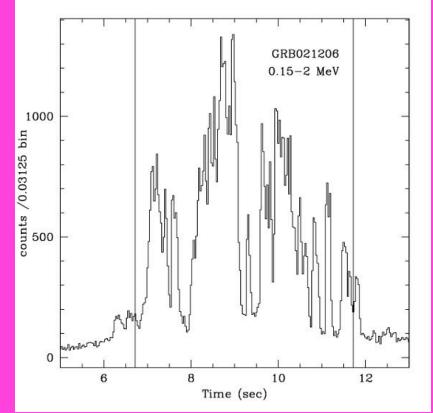
- ΔT -- separation of time-tags for temporally adjacent counts.
- Two counts detected in different detectors within ΔT=5 bµs we consider "simultaneous".
- We do not know what value of ΔT was used in CB03.

Doubles/Singles Ratio

Full Stop: $I_{p}(\theta) = C \frac{1 + p \cos(2(\theta - \theta_{p}))}{1 + p}$ $p = \mu \Pi \frac{Signal}{Signal + B}$

• If p is consistent with zero, then the intrinsic polarization Π cannot be determined -regardless of the value of μ , Signal or B.

• Conclusion: Polarization cannot be detected with the RHESSI data of GRB021206 Non-Detection of Polarization Signal


- Both S(θ) and
 D(θ) are
 inconsistent with
 being constant.
- R(θ) is consistent with constant.
- p≤0.041 (90% confidence).

Producing an Upper-Limit on Π

- Boggs and Coburn (2004) pointed out this result implies intrinsic polarization $\Pi < 100\%$. We agree.
- Boggs and Coburn (2004) state this is consistent with their measurement (Π=80± 20%), and that our approach is less sensitive. We disagree.
- Our limit on p implies that polarization cannot be detected with the RHESSI data of GRB021206

Counting Counts: Coincidences

We divided the lightcurve into δt = 5ms long, containing discrete ΔT =5 bµs bins and a total N_i counts. Setting µ_i= N_i $\Delta T/\delta t$, we calculate the number of 5 bµs bins which contain *n* counts due to coincidence:

$$N_n = \sum_{i} \frac{\mu_i^{n-1}}{(n-1)!} e^{-\mu_i} (N_i - (n-1))$$

Counting Counts by Counting

Events	RR & Fox	CB03
+Total Double-count events	8230	14916
- Coincidences	6640±80	4488±72
- Other Backgrounds	760 ±110	588±25
=Double-count Scattering Events	830 ±150	9840±96

Why are these so different? What data selections did CB03 use?

Counting Counts 2: Modeling

- The relative number of double-count scattering events due to scattering in detector X will be proportional to the total solid angle subtended by all other detectors, as viewed from detector X.
- Also, it will be proportional to the relative sensitivity of detector X.
- Double-Count coincidence events will be proportional to the relative sensivities, but not to the solid angle subtended by all other detectors.
- Result: of our 8240 counts, a fraction f=11±3% are due to scattering (910± 250 double-counts) consistent with our value of 830± 150 from counting; inconsistent with 9840± 96 from CB03.

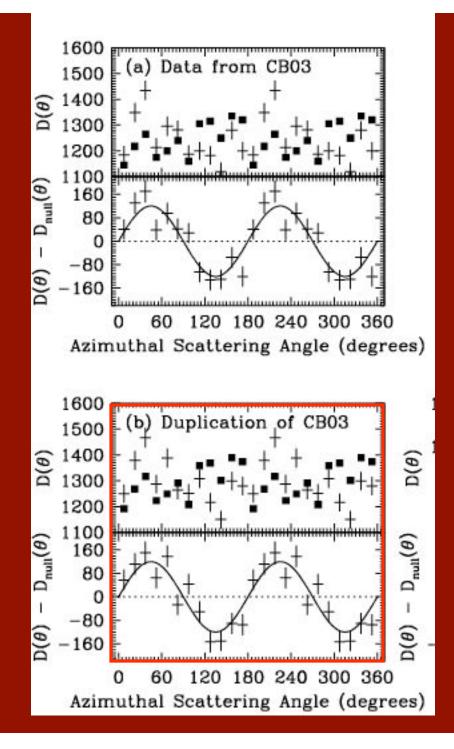
Counting Counts: Bunches

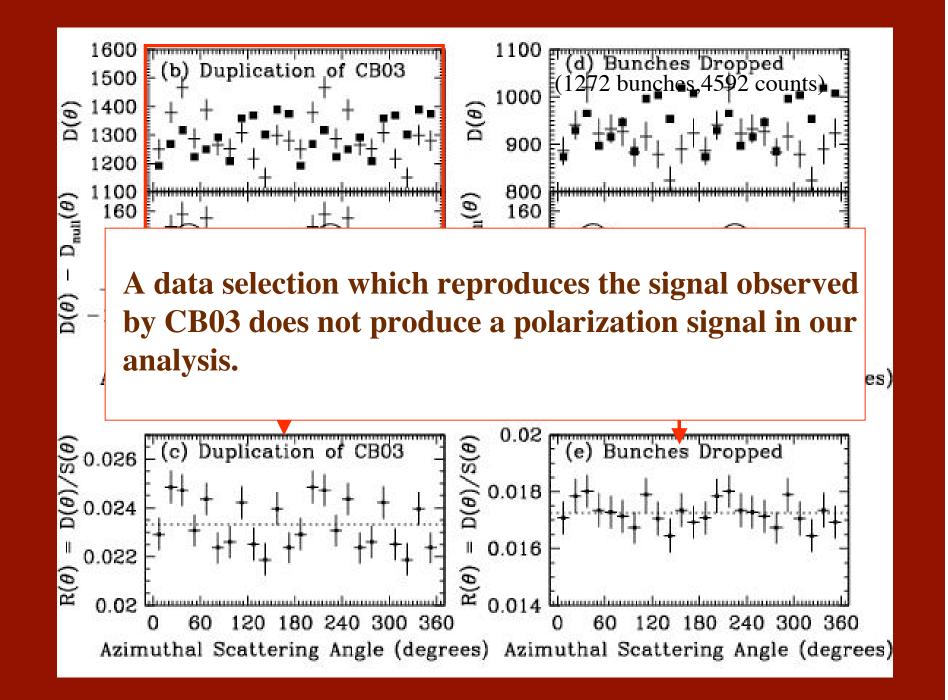
 Bunch: A group of >2 counts which arrive in < ΔT. Which are first two counts is ambiguous (3 angles for 3 counts, n(n-1)/2 angles for n counts!

Bunches are a Background

- Estimate: $N_{>2}=159\pm 2$ in GRB021206.
- Observed: $N_{>2,obs}$ =481, excess of 322±22
- These are not due to scattering: $N_2 = fN_1$, $N_3 = fN_2$, $N_4 = fN_3 (=f^3N_1)$.
- $r = N_2/N_{>2}=44 \pm 2$ is predicted from f= N_2/N_1 , but r = 5.9 ±0.5 is observed --> a factor of 7.8 ±0.8 too many $N_{>2}$ events to be caused by scattering.
- During a 24 s background period, same procedure predicts N_{>2}=0.2 events; while 1013 were observed.
- Bunches are:
 - not associated exclusively with the GRB;
 - not due to scattering;
 - highly non-Poissonian

Limit on Intrinsic Polarization (П) of GRB021206


$n - \mu \Pi$	Signal	
$p = \mu \Pi$	Signal + B	

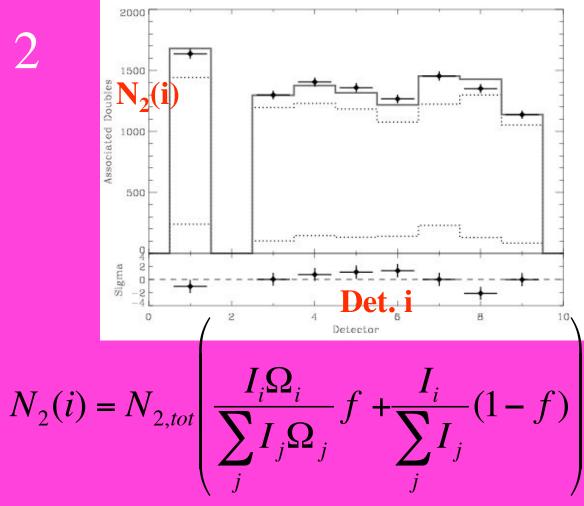

	μ	Signal	Signal+B	Π
Our Result	0.19±0.04 (CB03)	830± 150	8240	<210%
Using CB03 values (f=0.66)	0.19 ± 0.04	f * 8240	8240	<32%

If we had agreed with CB03 on the same fraction of doubles being due to scattering, then our limit on Π would be below their claimed detection (<32% vs. 80± 20%).

Duplication of CB03 Analysis

Choosing three data selections: ΔT=8 bµs, include "bunches" (N>2), choose a θ=0, we do a fair job of duplicating the CB03 double-event lightcurve, finding 15540 counts (vs. 14916 by CB03).

Conclusions


- We developed a polarization detection analysis which does not rely on GEANT simulations.
- We do not detect polarization in the RHESSI data of GRB021206.
- Intrinsic Polarization of GRB021206 is <210%. Polarization is not detected because the RHESSI S/N is too low.
- Our analysis method cannot be improved on since we are at the Poisson limit (increase S/N by >10).
- We duplicate the data selection of CB03. The signal claimed as polarization is not polarization. We suggest it is due to inclusion of "bunches" (pure background) and systematic uncertainty in their D_{null} (θ).

Questions for Coburn & Boggs

- How do you demonstrate that the systematic uncertainty in D_{null} is < 3%?
- What were your data selections? Specifically:
 - What ΔT did you use?
 - Did you exclude bunches, which are obviously a background, and not scattering in the detector?
 - Why are these different from the ones we use?
- How do you explain that our duplication of your data selection shows no evidence of polarization in our analysis?

Counting Counts 2	Cou	nting	Counts	2
--------------------------	-----	-------	--------	---

Det.	Ω_{i}	I _i
		(counts)
1	3.73	9870
2	n/a	n/a
3	1.90	8191
4	2.68	8426
5	2.52	8114
6	2.94	7379
7	4.23	8377
8	2.24	8903
9	1.80	7216

2 Parts: fraction f of doubles which are proportional to the apparent solid angle and sensitivity, fraction 1-f which is proportional to sensitivity only.

 $f=11\pm 3\%$ (non-zero)