Re-Analysis of γ-ray Polarization in GRB 021206

R. E. Rutledge (McGill)
D. B. Fox (Caltech)

MNRAS, in press; astro-ph

History of observations and implications

- Discovery (1972)
- Homogeneity and Isotropy (Meegan et al 1992): A Cosmological Population.
- Optical afterglows (van Paradijs et al 1997), a high-z emission line (Metzger et al 1997)
- Achromatic Breaks in the afterglow lightcurves--> Jets (e.g. Frail et al)
- Association with SNe (lightcurves: Bloom 1999; spectra: Hjorth, Stanek 2003).
- γ-ray polarization (Coburn \& Boggs 2003)
- First detection of γ-ray polarization in any celestial source.
- A direct probe of evolutionary relativistic MHD, with implications for the formation of magnetic fields in astrophysical jets and shock fronts; in B-field generation in SNe ejecta; and perhaps at the site of the SNe itself. In turn, implications for B-field generation in SNe , providing direct physics input for SNe simulations (would affect mixing and nucleosynthesis); B-field generation in proto-neutron stars and in NSs themselves for which we have only poor observational constrains.
None of the reported X-ray emission lines are significant Sako, Harrison \& RR (2004), submitted.

RHESSI SPEX Detectors

RHESSI

- Nine geometrically identical Ge detectors in a plane.
- spacecraft rotates P~4 sec
- γ s time-tagged in ~ 1 b μs

Detecting "Doubles"

Single SPEX detector

Scattered γ Detected γ
("singles")

Incoming $\gamma \mathrm{s}$

Method of
 Cobrun \&
 Boggs 2003 (CB03)

- Observed D(θ).
- Monte Carlo simulation: using the observed singlecount events and a GEANT mass model and radiative transfer, found $\mathrm{D}_{\text {null }}(\theta)$ assuming a nonpolarized beam.

Method

20% error bar

(cf. with μ)

9\% magnitude of modulation

- Assumption of CB 03 : systematic uncertainty in $\mathrm{D}_{\text {null }}(\theta) \ll$ statistical uncertainty in $\mathrm{D}(\theta)(3 \%)$. This is not credible.
- To calculate $\mathrm{D}_{\text {null }}(\theta)$:
- The fraction of Singles which produce Doubles
- The fraction of Doubles which only scattered once, and did not interact with passive material.
- Does not account for:
- Atmospheric scattering?
- Non gamma-ray background (bunches)?
- Modulation factor $\mu=0.19 \pm 0.04$ (20\% uncertainty).

Polarization Detection

 Without Monte Carlo Simulations:The Doubles/Singles Ratio

$$
N_{i, j}(t)=N_{i}(t) B_{i, j}+N_{j}(t) B_{j, i}
$$

$N_{i, j}\left(\theta_{i, j}(t)\right)=\left[N_{i}\left(\theta_{i, j}(t)\right) B_{i, j}+N_{j}\left(\theta_{i, j}(t)\right) B_{j, i}\right] I_{p}\left(\theta_{i, j}\right) \quad$ Unpolarived γs

$$
I_{p}(\theta)=\frac{1+p \cos \left(2\left(\theta-\theta_{p}\right)\right)}{1+p}
$$

$$
N_{i, j}\left(\theta_{i, j}(t)\right)=\left[N_{i}\left(\theta_{i, j}(t)\right)+N_{j}\left(\theta_{i, j}(t)\right)\right] B_{i, j} I_{p}\left(\theta_{i, j}\right)
$$

$$
R(\theta)=\frac{N_{i, j}\left(\theta_{i, j}\right)}{N_{i}\left(\theta_{i, j}\right)+N_{j}\left(\theta_{i, j}\right)}=C I_{p}\left(\theta_{i, j}\right)
$$

Example: Polarized γs

n

Singles	5000
Doubles	3000
$\mathrm{D}\left(0^{\circ}\right) / \mathrm{S}\left(0^{\circ}\right)=0.60 \pm 0.03$	

Singles	2000
Doubles	200
$D\left(90^{\circ}\right) / S\left(90^{\circ}\right)=0.10 \pm 0.007$	

Limiting uncertainty in $\mathrm{D}(\theta) / \mathrm{S}(\theta)$ is Poisson.

What is "Simultaneous"?

- ΔT-- separation of time-tags for temporally adjacent counts.
- Two counts detected in different detectors within $\Delta \mathrm{T}=5 \mathrm{~b} \mu \mathrm{~s}$ we consider "simultaneous".
- We do not know what value of 4 T was used in CB03.

Doubles/Singles Ratio

Full Stop:

$$
I_{p}(\theta)=C \frac{1+p \cos \left(2\left(\theta-\theta_{p}\right)\right)}{1+p}
$$

$$
p=\mu \Pi \frac{\text { Signal }}{\text { Signal }+B}
$$

- If \mathbf{p} is consistent with zero, then the intrinsic polarization Π cannot be determined -regardless of the value of μ, Signal or B.
- Conclusion: Polarization cannot be detected with the RHESSI data of GRB021206

Non-Detection
of Polarization Signal

- Both $S(\theta)$ and $\mathrm{D}(\theta)$ are inconsistent with being constant.
- $R(\theta)$ is consistent with constant.
- $\mathrm{p} \leq 0.041$ (90\% confidence).

Producing an Upper-Limit on Π

- Boggs and Coburn (2004) pointed out this result implies intrinsic polarization $\Pi<100 \%$. We agree.
- Boggs and Coburn (2004) state this is consistent with their measurement ($\Pi=80 \pm 20 \%$), and that our approach is less sensitive. We disagree.
- Our limit on p implies that polarization cannot be detected with the RHESSI data of GRB021206

Counting Counts: Coincidences

We divided the lightcurve into $\delta \mathrm{t}=5 \mathrm{~ms}$ long, containing discrete $\Delta \mathrm{T}=5$ bus bins and a total N_{i} counts. Setting $\mu_{i}=\mathbf{N}_{\mathrm{i}}$ $\Delta T / \delta t$, we calculate the number of 5 bus bins which contain n counts due to coincidence:

$$
N_{n}=\sum \frac{\mu_{i}^{n-1}}{(n-1)!} e^{-\mu_{i}}\left(N_{i}-(n-1)\right)
$$

Counting Counts by Counting

Events	RR \& Fox	CB03
+Total Double-count events	8230	14916
- Coincidences	6640 ± 80	4488 ± 72
- Other Backgrounds	760 ± 110	588 ± 25
=Double-count Scattering Events	830 ± 150	9840 ± 96

Why are these so different? What data selections did CB03 use?

Counting Counts 2: Modeling

- The relative number of double-count scattering events due to scattering in detector X will be proportional to the total solid angle subtended by all other detectors, as viewed from detector \mathbf{X}.
- Also, it will be proportional to the relative sensitivity of detector X.
- Double-Count coincidence events will be proportional to the relative sensivities, but not to the solid angle subtended by all other detectors.
- Result: of our 8240 counts, a fraction $\mathrm{f}=11 \pm 3 \%$ are due to scattering (910 ± 250 double-counts) consistent with our value of 830 ± 150 from counting; inconsistent with 9840 ± 96 from CB03.

Counting Counts: Bunches

- Bunch: A group of >2 counts which arrive in $<\Delta \mathrm{T}$. Which are first two counts is ambiguous (3 angles for 3 counts, $\mathbf{n}(\mathrm{n}-1) / 2$ angles for \mathbf{n} counts!
- Bunches are a Background
- Estimate: $\mathrm{N}_{>2}=159 \pm 2$ in GRB021206.
- Observed: $N_{>2, o b s}=481$, excess of 322 ± 22
- These are not due to scattering: $\mathrm{N}_{2}=\mathrm{fN}_{1}, \mathrm{~N}_{3}=\mathrm{fN}_{2}, \mathrm{~N}_{4}=\mathrm{f} \mathrm{N}_{3}\left(=\mathrm{f}^{3} \mathrm{~N}_{1}\right)$.
$-\mathrm{r}=\mathrm{N}_{2} / \mathrm{N}_{>2}=44 \pm 2$ is predicted from $\mathrm{f}=\mathrm{N}_{2} / \mathrm{N}_{1}$, but $\mathrm{r}=5.9 \pm 0.5$ is observed --> a factor of 7.8 ± 0.8 too many $\mathrm{N}_{>2}$ events to be caused by scattering.
- During a 24 s background period, same procedure predicts $\mathrm{N}_{>2}=0.2$ events; while 1013 were observed.
- Bunches are:
- not associated exclusively with the GRB;
- not due to scattering;
- highly non-Poissonian

Limit on Intrinsic Polarization (II) of GRB021206

$$
p=\mu \Pi \frac{\text { Signal }}{\text { Signal }+B}
$$

	μ	Signal	Signal+B	Π
Our Result	0.19 ± 0.04 $(C B 03)$	830 ± 150	8240	$<210 \%$
Using CB03 values (f=0.66)	0.19 ± 0.04	$\mathrm{f} * 8240$	8240	$<32 \%$

- If we had agreed with CB 03 on the same fraction of doubles being due to scattering, then our limit on Π would be below their claimed detection ($<32 \%$ vs. $80 \pm 20 \%$) .

Duplication of CB03 Analysis

- Choosing three data selections: $\Delta \mathrm{T}=8 \mathrm{~b} \mu \mathrm{~s}$, include "bunches" ($\mathrm{N}>2$), choose a $\theta=0$, we do a fair job of duplicating the CB03 double-event lightcurve, finding 15540 counts (vs. 14916 by CB03).

Azimuthal Scattering Angle (degrees)

Conclusions

- We developed a polarization detection analysis which does not rely on GEANT simulations.
- We do not detect polarization in the RHESSI data of GRB021206.
- Intrinsic Polarizaion of GRB021206 is <210\%. Polarization is not detected because the RHESSI S/N is too low.
- Our analysis method cannot be improved on since we are at the Poisson limit (increase S / N by $\mathbf{> 1 0}$).
- We duplicate the data selection of CB03. The signal claimed as polarization is not polarization. We suggest it is due to inclusion of "bunches" (pure background) and systematic uncertainty in their $\mathrm{D}_{\text {null }}(\boldsymbol{\theta})$.

Questions for Coburn \& Boggs

- How do you demonstrate that the systematic uncertainty in $\mathrm{D}_{\text {null }}$ is $<3 \%$?
- What were your data selections? Specifically:
- What ΔT did you use?
- Did you exclude bunches, which are obviously a background, and not scattering in the detector?
- Why are these different from the ones we use?
- How do you explain that our duplication of your data selection shows no evidence of polarization in our analysis?

Counting Counts 2

Det.	Ω_{i}	I_{i}
1	3.73	9870
2	n / a	n / a
3	1.90	8191
4	2.68	8426
5	2.52	8114
6	2.94	7379
7	4.23	8377
8	2.24	8903
9	1.80	7216

$$
N_{2}(i)=N_{2, \text { tot }}\left(\frac{I_{i} \Omega_{i}}{\sum_{j} I_{j} \Omega_{j}} f+\frac{I_{i}}{\sum_{j} I_{j}}(1-f)\right)
$$

2 Parts: fraction f of doubles which are proportional to the apparent solid angle and sensitivity, fraction 1-f which is proportional to sensitivity only.
$\mathrm{f}=11 \pm 3 \%$ (non-zero)

