atmospheres

Juri Poutanen (University of Oulu, Finland)

Plan:

- 1. Spectra of black hole and neutron star sources
- 2. Polarization of the disk component
- 3. Polarization of Comptonized (corona) component
- 4. Bulk motion and impact on polarization
- 5. X-ray polarization of millisecond pulsars and X-ray bursters

mard states of plack noies and neutron stars

Seyfert 1 galaxy NGC 5548

Seyfert 1 galaxy IC 4329A

Soft states of Diack noies

Cyg X-1

spectral components

- 1. Multicolor disk
- 2. Thermal comptonization (inner flow/corona/boundary layer?)
- 3. Non-thermal comptonization (corona/jet?)
- 4. Reflection from the disk

Polarization from the disk

- 1. Pure scattering atmosphere. Polarization perpendicular to the normal. Maximum $\sim 11\%$ (Sobolev 1949, Chandrasekhar 1960).
- 2. Depends on the ratio of the absorption-to-scattering opacity (Nagirner 1962; Loskutov & Sobolev 1982). Polarization edge at iron edge?
- 3. Warm fully ionized skin will affects polarization (Sunyaev & Titarchuk 1985; Beloborodov & Poutanen 1999).

Intensity and polarization for different scattering orders k for Thomson optical depth $\tau_T = 1$. Incident photons from the bottom of the slab.

on electron temperature

The degree of linear polarization as a function of electron temperature and scattering angle. Rayleigh /Thomson scattering gives $P = (1 - \mu^2)/(1 + \mu^2)$, where $\mu = \cos \Theta$ and Θ is the scattering angle. From Poutanen (1994). Relativistic power-law isotropic electron distribution does not produce any polarization (Bonometto, Cazzola, Saggion 1970).

Polarization from the slad-corona

Intensity and polarization from the Comptonizing slab of Thomson optical depth $\tau_T = 0.5$ and electron temperature of 56 keV. Solid red curves - total intensity and polarization. Numbers mark the scattering orders. Incident radiation is unpolarized, first scattering order is polarized perpendicular to the slab normal, then polarization changes sign. From Poutanen & Svensson (1996).

Atmospheres in bulk motion

IN THE COMOVING FRAME incident photons are coming from the sides because of aberration

scattered photons are polarized parallel to the outflow velocity

MODEL EXPLAINS: (1) reflection-spectral index correlations in GBHs and AGNs (2) polarization parallel to the jet axis in Seyfert 1s (3) steep rises of polarization at Ly edge in quasars

Atmospheres in bulk motion

Disk radiation after passing through an outflow with $\beta = v/c = 0.45$ and column density $N_c = 0.2\sigma_T^{-1}$, as viewed at $\mu = \beta$. $I_{\lambda} = I\nu^2/c$ is plotted in arbitrary units. The sign of p is chosen so that p > 0 corresponds to the parallel polarization. The disk radiation is assumed to be a black body (unpolarized) with a sharp edge. The dashed, solid, and long-dashed curves represent the observed radiation (in the single-scattering approximation) for outflow temperatures kT = 0, 50, and 100 keV, respectively. From Beloborodov & Poutanen (1999).

DUIK MOUOH VS STALIC

Intensity and polarization of X-ray radiation expected from static slab and outflowing corona for different viewing angles.

Polarized reflection

Polarization of Compton reflection for an isotropic source above a disk. From Poutanen, Nagendra, & Svensson (1996).

J1808.4–3658:

the First Accreting Millisecond Pulsar

Light curves from SAX J1808.4-3658 folded with the 2.5 ms period. (a) Black body flux; (b) Comptonized flux; (c) predicted linear polarization in % for a slab geometry of the emitting region; (d) variations of the Doppler factor. Dashed curves correspond to a slowly rotating pulsar.