

PRIZE PolaRIZation Explorer

Eric Silver, The Smithsonian Astrophysical Observatory

Industrial Partner: Ball Aerospace & Technologies Corp.

Science Team:

Smithsonian Astrophysical Observatory Massachusetts Institute of Technology Danish Space Research Institute **Russian Space Research Institute** Ball Aerospace & Technologies Corp. Sonoma State University Lawrence Livermore National Laboratory Max-planck-institute For Astrophysics Cambridge University University of Illinois At Urbana-Champaign Instituto Nazionali Di Astrofisica, Palermo Harvard College Observatory University of California at Berkeley Gettysburg College McGill University University of California at San Diego Florida Institute of Technology

Science Payload

The Two SODART Flight Mirrors and The SXRP Polarimeter Flight Unit from the Spectrum X-Gamma Payload

A Replica of the Bragg Crystal Polarimeter in SXRP

Mission Overview

A Unique Combination of Features Two 8 m, High Throughput Telescopes for Sensitive X-Ray Polarimetry

Energy-Resolved X-Ray Polarization Measurements in the 2 - 16 keV Energy Band

Accurate Photon Timing for Pulsar Studies

Key Mission Characteristics

Two SODART mirror assemblies and SXRP polarimeter are built, calibrated and qualified for flight.

The Bragg crystal polarimeter for the second telescope is a streamlined replica of the one in SXRP.

A small, lightweight, selectively redundant spacecraft enables highly stable operation in low earth orbit.

Spacecraft components are flight proven, have low cost, and minimal schedule risk.

In addition, significant margins for schedule (10 weeks), cost (25%), and technology have been established.

Launch Vehicle

The Taurus 2210 launcher provides high reliability to orbit.

Science Objectives

Explore the Ultimate Limits of Gravity and Energy

Test General Relativity predictions of strong field gravity near black holes * Measure the spin of a black hole* Explore mechanisms for jet propagation in microquasars Test if jets from black holes power the X-ray emission Measure the accretion disk geometry around neutron stars* Determine whether accretion-powered pulsars have pencil or fan-beam geometries* Test the source geometry for rotation-powered pulsars* Measure the extreme field strengths of magnetars Confirm that supernova remnants are sites for cosmic ray acceleration Constrain models for extragalactic jet propagation Test the standard unified model for AGN Determine the origin of the X-ray emission from radio galaxies and quasars

SODART Mirror Module						
Parameters						
Field of View	60 arc min					
Half Power Width	2.8 arc min					
Focal Length	8 m					
Inner Shell Diameter	16 cm					
Outer Shell Diameter	60 cm					
Coating	Au - 400					
Effective Area at 2keV	949 cm ²					
Effective Area at 8keV	728 cm2					
Effective Area at 20keV	61 cm ²					
Shell Material	AI					
Shell thickness	0.400 mm					
Shell Length	200 mm					
Number of Shells	143					
Mass/Mirror Module	101 kgm					
Total Mirrored Surface	62 m ²					

N/A

22.7

64.0

12.2

36.3

N/A

* Note: Spacecraft Bus (mass / power) include (15 / 21)% reserve

Instrument (mass / power) include (9 / 25) % reserve (See Master Equipment List)

Observe how black holes influence space, time and matter

Energy resolved polarimetry for black holes Cyg X-1(high state) and GRS 1915+10⁵ for 10⁵ s and 3 x 10⁵ s. Spectra from Cui et al. 1998 for Cyg X-1; Muno et al.1999 for GRS 1915+105). Estimated inclination angles are 30° for Cyg X-1 and 70° for GRS 1915+105.

Test the theory of general relativity near black holes Determine the spin of a black hole

Predicted polarization fractions and position angles as a function of energy for disk models near a black hole.

Disk with 75.5° inclination (Conners, Piran and Stark,1980)

Effects of mass accretion rate for a 10 solar mass black hole (Matt, Fabian and Ross, 1993)

Neutron Stars and Supernova Remnants

Study accretion disk dynamics

Energy resolved polarimetry of Her X-1 using PRIZE.

Active Galacitc Nuclei Blazars, Quasars and Radio Galaxies

Reveal the nature of cosmic jets and relativistic flows Test models of blazars and jets

Minimum Detectable Polarization (MDP) (%) 3 sigma									
				Flux 2-10 keV 10 ⁻¹¹ ergs cm ⁻² s ⁻¹					
Source	2.6 keV	5.2 keV	5-12 keV						
Galactic Black Holes in 10 ⁵ s									
Cyg X-1 (high state)	0.7	1.1	0.3	2800					
GRS 1915+105	0.8	1.3	0.4	1900					
Recurring BH Transients	1	1.6	0.5	1700					
Neutron Star Binaries in 10 ⁵ s									
Her X-1	2.2	3.9	2	240					
Cen X-3	1.4	2.5	0.9	480					
Cir X-1	0.9	1.5	0.5	1680					
GX 9 +9	1.5	2.5	1	576					
Vela X-1	1.4	2.5	0.9	600					
GX340+0	1.1	1.8	0.6	1080					
Rotation Powered Pulsars in 5 x 10 ⁵ s									
Crab Pulsar primary pulse	1.6	2.8	2.3	80					
Crab Pulsar leading edge	2.2	4	4.5						
Crab Pulsar trailing edge	2.2	4	4.5						
Supernova Remnants 5 x 10 ⁵ s									
Crab Nebula	0.3	0.51	0.17	2273					
Tycho	2.9	5.4	7.7	21.3					
Cas A	1.28	2.23	1.6	128					
AGN - Supermassive Black Holes in 3 >	(10 ⁵ s								
Sevferts									
NGC4151	8.1	8.2	7.7	15					
IC4329A	7.5	13.2	25	8					
Radio Galaxies and Quazars									
Cen A	5.7	3.22	2.1	15					
3C273	5.9	9.8	13.9	15					
Blazers									
Mrk 421	4.4	10.1	20.6	15					
Mrk 501	7.2	15	34.4	7					
PKS2155-304	6.3	16.6	50.8	7					

Polarimeter Strawman Observing Plan including Minimum Detectable Polarization (MDP)

Target Class	Target	Minimum Det	tectable Polari	Т	Total Time	
Stellar Mass Compact Objects		2.6 keV	5.2 keV	5-12 keV	(ks)	(ks)
BH binaries & Microquasars	Cyg X-1, GRS1915+105 (each twice)	0.4,0.5 0	0.7,0.8	0.2,0.2	300	1200
Recurrent/New Transients	~ 5 sources (each twice) e.g., GX339-4, 4U1630-47	<1	<1	<1	300	3000
Neutron-star Binaries Accretion Powered Pulsars	Cen X-3, Vela X-1 (in each of 5 pulse phases) Her X-1 High State (in each of 10 pulse phases) Her X-1 Low State (in each of 5 pulse phases)	1.4 2.7 5.4	2.5 4.8 9.5	0.9 2.4 4.7	100 70 70	1000 700 350
Low Magnetic Field	Sco X-1 GX 5-1, GX 349+2, GX 17+2, Cyg X-2, Cir X-1, GX 340+0, GX 9+9	0.2-1.8	0.3-3.3	0.1-1.5	100	800
Rot ation Powered Pulsars (Pulse Phased Polarimetry)	Vela in each of 5 pulse phase bins Crab in each of 10 pulse phase bins	4 3	6 5	5 4	200 100	1000 1000
Magnetars	4U0142+61, RXS1708-40, 1E2259+58	3-11	12-50	30	500	1500
Peculiar X-ray Binaries	Rapid Burster Cyg X-3 (P _{orb} =4.8 hr)	7 1.2	10 2.0	10 0.7	300 100	300 100
SNR's Plerion (pulsar wind nebulae) Shell	(Crab, Vela) <i>e</i> , G21.5-0.9 7 10 18 500 500 Tycho, Cas A, G347.5-05, RCW 86	7 1-7	10 2-11	18 2-40	500 500	500 2000
Supermassive Black Holes Seyfert 1	NGC4151, IC4329A, NGC3783, NGC5548, MCG-6-30-15	7-11	7-23	3-55	300	1500
Seyfert 2 Radio Galaxies Blazars ToO	NGC4507, MCG-5-23-16, NGC5506 Cen A, 3C 273, 3C 120 Mkn421, PKS2155-304, 3C279, Mkn501, 3C 390.3 X-ray transients (e.g. new novae), Blazars in outburst, GRBs	7-25 6-20 4-13	8-14 3-20 9-20	3-23 2-30 18-44	300 500 400 100- 200	900 1500 2000 1000
Calibration	Crab, Sco X-1	0.7, 0.2	1.2, 0.3	0.4, 0.1	100	1000
Follow-up time						3450
GRAND TOTAL						24800

About PRIZE, the NASA Peer Review glowingly said:

"Even if PRIZE were to achieve just 1/3 of its objectives, it would be a fantastic mission!"

BUT,

the Peer Review felt that PRIZE still has a major weakness:

"The Crab might be just an anomaly. Expected polarizations might be just at the detection limit. Many extragalactic sources may have polarization levels as low as 1% which would be difficult to measure."

NASA placed PRIZE in Category II

Issues to Consider When Comparing Polarimeters

Compatibility of Telescope HPD with Polarimeter Detector Area Relative Sensitivity As a Function of Energy

> Modulation Factor Plays a Dominant Role in Measuring Polarization at 1% Level

Systematic Effects must be well understood (Phase locked or not)

Statistical Significance is not enough!

To Measure Polarization at the 1% Level

Highest Modulation Factor Possible

Systematic Effects Understood

Sufficient Statistics