

H. W. Schnopper, Chlorine K Absorption Edge in Single Crystal KCIO₃ in Röntgenspektren und Chemische Bindung Physikalisch-Chemisches Institut der Karl-Marx-Universität Leipzig, 1966, pp 303 - 313

POLARIZATION BY BRAGG REFLECTION

and an amplitude $2P_x I_x$.

 $I_v = I_x + J I_x$

BRAGG REFLECTIONS IN A MOSAIC CRYSTAL

MINIMUM DETECTABLE POLARIZATION: (P_x)_{min}

EFFECTIVE AREA: ENERGY RANGE: SOURCE FLUX: INCIDENT COUNT RATE: A cm² (including efficiencies)) E keV (a) E_0 F(E) kev cm⁻² sec⁻¹ keV⁻¹ $I_{\&}+I_z = F(E)() E/E_0$ cm⁻²s⁻¹

If) I_x is small then $I_{\&}$. I_z and the integrated signal recorded after an observing time t is the sum of the following terms:

Unmodulated signal: Modulated signal: Detector noise: $I_{\&}^{N}$ leakage ($2_{B}x$ 45 deg): Instrument modulation: $0.5(I_{\&}+I_{z})At = 0.5I_{T}At$ $0.5P_{x}(I_{\&}+I_{z})At = 0.5P_{x}I_{T}At$ $I_{D}A_{D}t$ $I_{\&}cos^{2}22_{B}At$

MINIMUM DETECTABLE POLARIZATION: (P_x)_{min}

The raw data is divided into N bins, the k^{th} bin containing A(k) events. The total number of events detected is

$$N_T = \stackrel{^{N}}{\underset{k=1}{'}} A(k)$$

The A(k) are distributed randomly with a mean value M(k) which is composed of 2 parts:

$$M(k) = M + m(k),$$

where M is the unmodulated part of the signal (source and background) and m(k) is the polarization modulation. In most observations $M \subset m(k)$.

For a random variable distributed according to Gaussian statistics, a minimum acceptable test is that the result of a measurement exceeds the one expected from chance alone by 3:, i. E., the probability of a chance result giving the measured result is only 0.26%. Thus,

$$0.0026 = exp'' - (A_{min})^2 / 2:^2$$
 and,
 $A_{min} = 3.45 (NM/2)^{1/2}$

In terms of the parameters of the experiment,

 $NM = I_T A_n t/2 + I_D A_D t \quad and,$ $2A_{min} = (P_x)_{min} I_T A t \quad which results in$

 $(P_x)_{min} = 6.9(I_TAt + 2I_DA_Dt)^{1/2}/I_TAt$. $6.9(I_TAt)^{-1/2}$ (for small detector noise)

BRAGG CRYSTAL X-RAY POLARIZATION PAYLOADS

ROXSAN PROPOSAL TO ESA 1984