
H. W. Schnopper, Chlorine K Absorption Edge in Single Crystal KClO_{3} in Röntgenspektren und Chemische Bindung
Physikalisch-Chemisches Institut der Karl-Marx-Universität Leipzig, 1966, pp 303-313

POLARIZATION BY BRAGG REFLECTION

If absorption is neglected,

$$
\begin{gathered}
I \times \mathbb{N}=I X \cos ^{2} 22_{B} \\
I_{z} N=I_{z}
\end{gathered}
$$

In practice, N and I_{x} are unknown, but if $Z_{B} .45$ deg then $I X \mathrm{~N} .0$. If the crystal is rotated about the axis of the incoming beam with an angular frequency T, then the $I_{z} N$ signal will have a component that has a modulation frequency $2 T$ and an amplitude $2 P_{x} I_{x}$.

BRAGG REFLECTIONS IN A MOSAIC CRYSTAL

MINIMUM DETECTABLE POLARIZATION: $\left(P_{\searrow}\right)_{\text {min }}$

EFFECTIVE AREA:
ENERGY RANGE:
SOURCE FLUX:
INCIDENT COUNT RATE:

A cm^{2} (including efficiencies)
) EkeV@E
$F(E) \mathrm{kev} \mathrm{cm}^{-2} \mathrm{sec}^{-1} \mathrm{keV}^{-1}$
$\left.I_{\square}+I_{z}=F(E)() E / E_{D}\right) \mathrm{cm}^{-2} s^{-1}$

If) I_{x} is small then $I_{D} . I_{z}$ and the integrated signal recorded after an observing time t is the sum of the following terms:

Unmodulated signal:
Modulated signal:
Detector noise:
I_{\square}^{N} leakage ($2_{B} \square 45 \mathrm{deg}$):
Instrument modulation:

MINIMUM DETECTABLE POLARIZATION: $\left(P_{\searrow}\right)_{\text {min }}$

The raw data is divided into N bins, the $k^{\text {th }}$ bin containing $A(k)$ events. The total number of events detected is

$$
N_{T}={ }_{k=1}^{N} A(k)
$$

The $A(k)$ are distributed randomly with a mean value $M(k)$ which is composed of 2 parts:

$$
M(k)=M+m(k),
$$

where M is the unmodulated part of the signal (source and background) and $m(k)$ is the polarization modulation. In most observations $M \square m(k)$.

For a random variable distributed according to Gaussian statistics, a minimum acceptable test is that the result of a measurement exceeds the one expected from chance alone by 3Z, i. E., the probability of a chance result giving the measured result is only 0.26%. Thus,

$$
\begin{aligned}
0.0026 & =\exp ^{\prime \prime}-\left(A_{\text {min }}\right)^{2} / 2[\nmid>\text { and }, \\
A_{\text {min }} & =3.45(\mathrm{NM} / 2)^{1 / 2}
\end{aligned}
$$

In terms of the parameters of the experiment,

$$
\begin{aligned}
N M & =I_{T} A_{n} t / 2+I_{D} A_{D} t \quad \text { and, } \\
2 A_{\text {min }} & =\left(P_{x}\right)_{\text {min }} I_{T} A t \quad \text { which results in } \\
\left(P_{x}\right)_{\text {min }} & =6.9\left(I_{T} A t+2 I_{D} A_{D} t\right)^{1 / 2} / I_{T} A t \\
& .6 .9\left(I_{T} A t\right)^{-1 / 2} \text { (for small detector noise) }
\end{aligned}
$$

BRAGG CRYSTAL X-RAY POLARIZATION PAYLOADS

ASTROPHYSICAL JOURNAL, 208, L125-L128, 1976

