NLC - The Next Linear Collider Project

Photon Collider

Jeff Gronberg/LLNL
For the γγ working groups
ALCPG Workshop SLAC
July 12-16, 2003

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Warm and Cold $\gamma\gamma$ technology work is on hold

- Photon collider technologies for both warm and cold accelerators
 - Warm technology based on MERCURY laser is being developed at LLNL
 - Final laser is under construction
 - Cold technology using recirculating cavity being designed at DESY / MBI
 - Both are waiting for technology decision
- Looking for R&D issues common to both for work before the technology decision
Detector groups need to evaluate the effect of higher $\gamma\gamma$ backgrounds

- Additional tracks from $\gamma\gamma \rightarrow$ hadrons will affect occupancies and reconstruction
 - Cold v. Warm
 - Cold time structure allows readout of a single crossing
 - Warm time structure requires fast readout to minimize number of crossings
 - Extraction line aperture requires rad-hard silicon
 - Technology exists

Charged tracks
3.7 tracks/crossing
($|\cos \Theta| < 0.9$)

Neutral showers
5.5 showers/crossing
($|\cos \Theta| < 0.9$)
Higgs physics studies

- IWSLC Jeju panel determined that $\gamma\gamma$ is an important capability to retain for the LC
 - Higgs
 - SM light Higgs \rightarrow bb, W+W- and $\gamma\gamma$ done
 - SUSY Heavy H0, A0 \rightarrow bb done
 - SUSY Heavy H$^+$ \rightarrow $\tau\nu$ done
 - CP determination of Higgs with linear polarization
 - Expanding study to SUSY models with explicit CP violation in the Higgs sector
- Extending analyses to Higgs \rightarrow ZZ, Zγ
 - Pandora-pythia with H \rightarrow ZZ and Zγ cross sections
 - Including $\gamma\gamma$ \rightarrow $\gamma\gamma$, ZZ, Zγ backgrounds in pandora
- Impact of MSSM on the SM light Higgs Analysis
 - The ratio of MSSM / SM of $\sigma(\gamma\gamma\rightarrow h) \times$ BR(h \rightarrow bb) still yields a good measurement over most of M_A, $\tan(\beta)$ space.
- NMSSM with extra CP+ and CP- Higgs
 - Light h \rightarrow aa \rightarrow bbbb checked, where LHC sees a hint, $\gamma\gamma$ can make a mass measurement.
 - h \rightarrow aa \rightarrow $\tau\tau\tau\tau$, observable with good CP info
- Complex MSSM model
 - h \rightarrow aa \rightarrow bbbb, $\tau\tau\tau\tau$ done, visible at $\gamma\gamma$
 - h$_1$ \rightarrow bb complementaty to h$_1$ \rightarrow $\gamma\gamma$ at LHC
- Littlest Higgs hep/ph-0302188
 - Partial widths of loop decays $\Gamma(h\rightarrow gg)$ versus $\Gamma(h\rightarrow \gamma\gamma)$ probe the model parameters. Greatest sensitivity with $\gamma\gamma$ data and complementarity to LHC.
- Radion-Higgs Mixing hep/ph-0304245
 - Will be observable at $\gamma\gamma$
 - Combining information with LHC probes anomalous couplings in this model.
For LCWS / Victoria / Technology decision

- Photon Collider Technology
 - Waiting for the technology decision before beginning prototyping
 - MERCURY laser
 - Single head test are done
 - Final laser will be at full power by Victoria

- Photon Collider Detector
 - Background simulation is ready
 - Agreement between Europe/US on level
 - Detector groups need to evaluate the effect on reconstruction

- Photon Collider Physics
 - SM Higgs, SUSY Heavy Higgs, Higgs CP analysis mature
 - Susy sparticle, Extra-dimensions, non-SM Higgs, lepton number violation ongoing