Presentation at the ALCPG-SLAC Meeting

SUSY Analysis of Sleptons
Problems, Solutions, Improvements

January, 2004
THE GROUP

Shirley Choi, Bradford Dobos, Tyler Dorland, Eric Erdos,
Jeremiah Goodson, Jack Gill, Jason Gray
Andrew Hahn, Eric Kuhn, Alfonso Martinez
Kyle Miller, Uriel Nauenberg, Joseph Proulx,
Jesse Smock
ACTIVITIES

- Simulation of Supersymmetry. New method to overcome the negative effects of beamstrahlung and bremmstrahlung.

- The Benefits of Positron Polarization.

- Resolution on M_0, $M_{1/2}$ from mass measurement
Simulation of Selectron Production

Case Study

• Consider Case SPS3, $M_{1/2} = 400$ GeV, $M_0 = 90$ GeV.

• Mass of $e_R = 178.3$ GeV, Mass of $e_L = 287.1$ GeV, Mass of $\chi^0_1 = 160.6$ GeV.

• Compare Fits with Beam and Bremsstrahlung and without.

• We use the $e^+ - e^-$ Energy Spectra Subtraction Technique to remove Standard Model Background.
Selectron Production

$$e^+ - e^- \text{ Energy Spectra}$$
Resultant Fits to Energy Edges

No Bremsstrahlung

Bremsstrahlung

Chi2 / ndf = 2.158 / 1
Mass eR = 178.7 ± 0.1589
Mass eL = 287.1 ± 0.1863
Mass X10 = 160.8 ± 0.1414
New Method to Determine Masses

Compare Energy Spectrum to those Generated with different parameters encompassing the correct one.

Do a Chi Square Fit to the Spectra Comparison.

Choose the minimum and determine the masses.
$M_{1/2} = 400$, $M_0 = 90$ expected value.

$M_{1/2} = -1.5\%$ from 400, $M_0 = 90$
Chi Square Fit Distribution

\[M_{1/2}(\text{expec.}) = 400 \text{ GeV} \]

\[M_{1/2}(\text{fit}) = 400.22^{+0.19}_{-0.54} \text{ GeV} \]

\[M_0 \text{ fixed at 90 GeV} \]
$M_{1/2}$ vs M_0 curves for M_{sel}^L values

$M_{1/2}$ vs M_0 curves for M_{sel}^R values

Not physical
Not physical
$M_{1/2}$ vs M_0 curves for $M(\tilde{\chi}_1^0)$

No dependence on $\tan(\beta)$

Not physical
Effect of Positron Polarization

What do we observe if we have positron polarization. We studied 80% e^-, 80% e^+.

Applied to Selectrons and Smuons.
Electron, Positron Energy Spectrum from e^+e^- → all $\bar{e}\bar{e}$

$e^- \text{Spect.}$ $e^- 80\% R$ $e^+ \text{Spect.}$ $e^- \text{Spect.}$ $e^- 80\% R$ $e^+ \text{Spect.}$

$e^+ 80\% L$

$e^+ 80\% R$

$e^+ 0\text{ pol.}$

$e^+ 0\text{ pol.}$
Muon Energy Spectrum from $e^+ e^- \rightarrow \mu^+ \mu^-$

$e^- 80\% R$ $e^+ 80\% L$ $e^- 80\% L$ $e^+ 80\% R$