Implications of Higgsless Models of EWSB

OUTLINE

1) HIGGSLESS EWSB
2) PHENOMENOLOGICALLY VIABLE MODEL
3) MORE UNITARITY ISSUES
4) COLLIDER PHENOMENOLOGY

BEN LILLIE

H. DAVOUDIASL
J. HEWETT
B.L.
J. RIZZO
hep-ph/0312193
WHAT IS THE HIGGS FOR?

- GIVES MASS TO THE W, Z
- UNITARIZES $W_L W_L \rightarrow W_L W_L$

SCATTERING AMPLITUDE

$$A = a s^2 + b s + c + \mathcal{O}(s)$$
Gauge Fields on an interval

Take $M^4 \times I_{\text{interval}}$

Put a gauge field in the bulk

\[
A^\tau = A^\tau + \sum_{n=1}^{\infty} A_n^\tau \cos \left(\frac{2\pi n y}{L} \right) + \sum_{n=1}^{\infty} A_n^\tau \sin \left(\frac{2\pi n y}{L} \right)
\]

\[
A^5 = A^5 + \sum_{n=1}^{\infty} A_n^5 \cos \left(\frac{2\pi n y}{L} \right) + \sum_{n=1}^{\infty} A_n^5 \sin \left(\frac{2\pi n y}{L} \right)
\]

Normal orbifold boundary conditions

\[
J_5 A^\tau = 0, \quad A^5 = 0
\]

Note momentum

\[
\rho^2 = \rho_5^2 + \rho_5^5
\]

Looks like a mass term

Mass is connected to curvature in 5^τ
DIFFERENT BOUNDARY CONDITIONS

GENERATING MASSES

$\delta_5 A^\xi = 0$

$\delta_5 A^\mu = 0$

$\delta_5 A^\nu = 0$

$\delta_5 A^\rho = 0$

NORMAL ORIGIFOLD

GAUGE-BREAKING BCJ

C. A. K., G. ROJEAN,
M. MURAYAMA, P. ILO GE, JERNING
hep-ph/0305237
UNITARITY

\[g_2 = \sum_{n=x,1} g_n^2 \]

\[4 M_\omega^2 g_\omega^2 = 3 \sum_{n=1}^{\infty} M_n^2 g_n^2 \]

VALID AT ASYMPTOTICALLY HIGH S
(Possibly) Viable Model

- In flat space the mass spectrum is roughly $2n-1$, which is compactification radius, too light.

- Without a Higgs doublet, no custodial $SU(2)_L$. g parameter way off.

Both problems solved by

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

In a Randall-Sundrum (warped) scenario.
BREAKING PATTERN

"TeV" BRANE

SU(2)_L \times SU(2)_R \rightarrow SU(2)_D

WARPED SPACE

$KTR_0 = 30$

"PLANCK" BRANE

SU(2)_L \times U(1)_{B-L} \rightarrow U(1)_Y

FERMIONS LIVE HERE

OVERALL

SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y
MODEL PARAMETERS

\[g_L = SU(2)_L \text{ COUPLING} \]
\[g_R = SU(2)_R \text{ COUPLING} \]
\[g' = U(1) \text{ COUPLING} \]

\[K_{11} = \text{SCALING BETWEEN PLANK \& TeV SCALES} \]

\[g_L \]
\[g_R \]
\[g' \]

\[\text{BRANE LOCALIZED KINETIC TERMS ON PLANCK BRANE} \]

SEE NOMURA

\[k = \frac{g_R}{g_L} \]
\[\lambda = \frac{g'}{g_L} \]

\[S_L = \frac{k g_L^2}{2 g_L^2} \]
\[S_Y = \frac{\lambda}{2 + k^2} S_L \]

K LEFT AS FREE PARAMETER
SPECTRUM

CHANGE

EXCITED

STATES

\{ \}

NEUTRAL

EXCITED

STATES

\{ \}

\{ \}

\{ \}
ASSYMMETRIC UNITARITY → SUM RULES

Residual

\[\text{Residual} = g^2 - \sum_{n=1}^{\infty} g^2_n \]

Largest KK number
PRECISION ELECTROWEAK DATA

\[\sin^2 \theta \] defined from \(\frac{M_w}{M_Z^2} \)

Exact in our scheme

Can define

\[\sin^2 \theta_{\text{eff}} = \frac{\alpha^2}{\theta^2} \]

\[\sin^2 \theta_{\text{eff}} \] from \(Z \)-pole

Example calculation

Measure deviations of these

Also Barbieri,
Pomarol & Rattazzi

\(\theta - \text{Yr'/03/1285} \)

Burman & Nomura

\(\theta - \text{Yr'/03/1247} \)
\[\sin^2 \theta \]

\[\sin^2 \theta_{qs} \]

\[\sin^2 \theta_{adj} \]

\[\sin^2 \theta_{eg} \]

\[\text{Min from theory } \sim 0.56 \]

\[\sim \text{Max from Perturbativity} \]
UNITARITY ISSUES

RECALL \(\text{sum rules are valid at asymptotically high } S.\)

WHAT IF UNITARITY BREAKS BEFORE THIS REGIME?

PARTIAL WAVE UNITARITY TEST

\[
a_0 = \frac{1}{32\pi} \int d\omega \ A(\omega, \nu_1 \nu_2 \rightarrow \nu_3 \nu_4)
\]

\[
|\Re(a_0)| \leq \frac{1}{2}
\]
WARPED HIGGSLESS MODEL \(k = 3 \)

\[a_0 \]

\[\sqrt{s} \ (\text{GeV}) \]

- S-WAVE AMPLITUDE
- UNITARITY BOUND

\[a_0 \approx 0.5 \text{ at } \sqrt{s} \approx 5000 \]
ONSET OF UNITARITY VIOLATION
Collider Issues

Important Signatures

- **No Higgs Scalar**
 - Could be a scalar, radion, for example

- **Rising W_{WW} Scattering**
 - Studied in general
 - Tim Barklow e^+e^-

- **Doubled Z' States**
 - Feature of several extra dimensional models
 - Rizzo hep-ph/0305077

- **Gluon Resonances**

- **Graviton Resonances**
 - Small, unlike generic RS
DRELL-YAN PRODUCTION AT LHC

Excited States

Width floats to account for top quark mass
$G \to \gamma \gamma$ at LHC

$M_{\gamma\gamma}$ (GeV) vs Events/50 GeV/3 ab$^{-1}$
LINEAR COLLIDER (TO BE DONE)

MOST INTERESTING NEW QUESTION

WHAT CAN THE LC LEARN ABOUT THE COUPLINGS OF A DOUBLED KK STATE WHILE COLLIDING BELOW THRESHOLD?

- MASS of (TWO STATES) KNOWN FROM LHC

MAYBE

UNDER CERTAIN CONDITIONS, QUITE A LOT

75±20 1/12 2007

96 12 2001
CONCLUSIONS

- EXTRA DIMENSIONS MAY PROVIDE AN INTERESTING ALTERNATIVE TO THE HIGGS MECHANISM

- CURRENTLY NO VIABLE MODEL, BUT THE IDEA IS STILL YOUNG (<1 yr)

- RICH PHENOMENOLOGY THAT NEEDS A LINEAR COLLIDER TO UNTANGLE.