Event Generation of SM and SUSY Processes at LCs using Isajet v7.69

H. Baer, F. Paige, S. Protopopescu and X. Tata

OUTLINE

• Isajet overview
• SM processes in Isajet
• beam polarization in Isajet
• the Isajet SUSY models and sparticle mass calculation
• SUSY processes in Isajet
• sparticle 3-body decays in isajet
• tau decays in Isajet
• bremsstrahlung/beamstrahlung in Isajet
• some future upgrades
Isajet overview

- Isajet the first of multi-purpose event generators to appear
- Created by Frank Paige and Serban Protopopescu in 1979 to model jet activity expected at the ill-fated BNL Isabelle pp collider
- Original algorithm contained:
 - Hard scattering processes (perturbative QCD)
 - Fox-Wolfram algorithm for final state parton showers
 - Field-Feynman independent hadronization (IH) algorithm
- Isabelle project terminated, but Isajet used for many analyses at CERN $\sqrt{s_{pp}}$ collider: UA1 and UA2
- Jetset/Pythia (Sjöstrand) programs appear circa 1983; string hadronization (SH) model gives correlated $q\bar{q}$ hadronization
- SH and IH models agree well over most of phase space for e^+e^- two jet events, but SH model predicts a depletion of hadronic acxtivity in region between hard jets (verified): result of color flow
- 1983: Sjöstrand develops backward shower algorithm to treat initial state QCD radiation for hadron colliders; incorporated into Isajet as well
- 1985: Marchesini and Webber release Herwig algorithm; angle-ordered parton showers account for some interference effects in multiple gluon emission; Herwig uses a cluster
hadronization model (CH) which accounts for color flow as does SH model; CH model clusters partons that are nearby in phase space into hadrons, thereby eliminating non-local effects that arise in SH model

- all programs include most important $2 \rightarrow 2$ SM hard scattering processes for e^+e^-, pp and $p\bar{p}$ colliders; degree of sophistication in modeling varies.

- The challenge of past 20 years is to merge PS algorithm with NLO QCD calculations; several attempts every year, so none appear overwhelmingly compelling (see e.g. Sjóstrand; HB/Reno; Soper; Collins; Webber; Mrenna; ⋯)
SUSY in Isajet

• 1984: primitive SUSY production processes plus one-step decays in Isajet used for UA1 and UA2 analyses
• 1989: HB and X. Tata develop SUSYSM program: parton level sparticle production with cascade decays
• 1990: interface with Pythia for SH model
• 1991: Jim Freeman (CDF) was entire SUSY group at FNAL; rough patch of SUSYSM into Isajet
• 1992: F. Paige and HB incorporate sparticle production and cascade decays into isajet 7.00; release 1993
• 1994 Colorado: $e^+e^- \rightarrow SUSY$ into Isajet while on honeymoon; add WW, ZZ and ZH production; Isasugra SUSY RGE solution incorporated into Isajet;
• 1995: Susygen (Katsanevas)
• 1996: Spythia (Mrenna)
• 1996: polarized beams into isajet
• 1997: brem/beamstrahlung into isajet with help from M. Drees; large $\tan \beta$ SUSY event generation; treatment of τ helicity states
• 1998: 3-body decay MEs
• 1998: Suspect spectrum calculator
• 2001: SoftSUSY spectrum calculator
• 2002: SUSY in Herwig using Isajet decay table (Isawig)
• 2003: Spheno spectrum and decay calculator
• 2003: full one loop sparticle mass formulae in Isajet
• 2003: Les Houches accord (Skands et al.) to allow various spectra calculators interface with event generators
SM processes versus beam polarization

- **$EPO{L}$** keyword stipulates e^- and e^+ polarization
- $P_L(e^-) = (n_L - n_R)/(n_L + n_R)$
Models for SUSY in Isajet (all are MFV models)

- MSSM (weak scale inputs; no RGE solution)
 - MSSMA: m_g, μ, m_A, $\tan \beta$
 - MSSMB: m_{Q_1}, m_{D_1}, m_{U_1}, m_{L_1}, m_{E_1} (1st gen.)
 - MSSMC: m_{Q_3}, m_{D_3}, m_{U_3}, m_{L_3}, m_{E_3}, A_t, A_b, A_{τ} (3rd gen.)
 - MSSMD: m_{Q_2}, m_{D_2}, m_{U_2}, m_{L_2}, m_{E_2} (2nd gen. optional)
 - MSSME: M_1, M_2 (independent gaugino masses; optional)

- mSUGRA model (invokes RGE running solution)
 - m_0, $m_{1/2}$, A_0, $\tan \beta$, $\text{sign}(\mu)$

- SUGRA (non-universal soft terms)
 - NUSUG1: M_1, M_2, M_3
 - NUSUG2: A_t, A_b, A_{τ}
 - NUSUG3: m_{H_d}, m_{H_u}
 - NUSUG4: m_{Q_1}, m_{D_1}, m_{U_1}, m_{L_1}, m_{E_1} (1st/2nd gen.)
 - NUSUG5: m_{Q_3}, m_{D_3}, m_{U_3}, m_{L_3}, m_{E_3} (3rd gen.)

- GMSB
 - Λ, M, n_5, $\tan \beta$, $\text{sign}(\mu)$, C_{grav}
 - R, $\delta m^2_{H_d}$, $\delta m^2_{H_u}$, $D_Y(M)$, n_{51}, n_{52}, n_{53}

- AMSB
 - m_0, $m_{3/2}$, $\tan \beta$, $\text{sign}(\mu)$
• SUGRHN
 \[m_{\nu R}, \ M_N, \ A_{\nu}, \ m_{\tilde{\nu}_R} \]
• SSBCSC (select BC scale other than \(M_{GUT} \))
lsajet RGE solution (bottom-up approach)

- Begin with \overline{DR} gauge and Yukawa couplings at $Q = M_Z$
- Evolve up in E to where $g_1 = g_2$ (defines M_{GUT})
- Impose soft SUSY breaking masses at M_{GUT} and evolve down
- Calculate spectrum at $Q = M_{weak}$ using RG improved 1-loop eff. pot. evaluated at optimized scale choice (accounts for leading 2-loop terms)
- sparticle masses at 1-loop
- Evolve back up, this time include Yukawa threshold corrections at scale $Q = \sqrt{m_{iL} m_{iR}}$
- Iterate process until convergent solution is achieved
- Usually good agreement between lsajet, Suspect, SoftSUSY, Spheno (Kraml et al. study)
Isajet RGE solution for sparticle masses

- Isasugra soft term evolution

\[m_0 = 100 \text{ GeV} \]
\[m_{1/2} = 200 \text{ GeV} \]
\[A_0 = 0; \tan \beta = 4; \mu > 0 \]
Isajet RGE solution for Yukawa couplings

- Note MSSM-SM threshold corrections at $Q = \sqrt{m_{t_L} m_{t_R}}$
SUSY processes versus beam polarization

- Case study from BMT: PRD54, 6735 (1996)

\[\sqrt{s} = 500 \text{ GeV} \]
\[m_0 = 150 \text{ GeV}, \ m_{1/2} = 170 \text{ GeV} \]
\[A_0 = 0, \ \tan \beta = 5, \ \mu > 0 \]
Decays in Isajet

- Implement full set of sparticle cascade decays; valid at large $\tan \beta$ (not true for e.g. Pythia)
- Spin correlation: production/decay neglected
- 3-body decays include exact matrix elements for E dependence
- τ decays: Isajet calculates rate to τ_L and τ_R; decays them appropriately
SUSY event for LC

- Isajet $e^+e^- \rightarrow SUSY$ event from Norman Graf for LC
Brem/beamstrahlung convolution

- **Bremsstrahlung**: Fadin-Kurayev distribution
- **Beamstrahlung**: P. Chen encoded by M. Drees and HB
- **Convolution**:
 \[D_e(x) = \int_x^1 dz D_e^{brem}\left(\frac{x}{z}, Q^2\right) D_e^{beam}(z)/z \]
$e^+e^- \rightarrow \mu^+\mu^-$ including brem/beamstrahlung

- Note γ and Z peaks

\[d\sigma/dQ \ (fb/GeV) \]

- $e^+e^- \rightarrow \mu^+\mu^-$
- $\sqrt{s}=500 \text{ GeV}$
- beam/brem effect
- $\Upsilon=.1072; \ \sigma_z=.12 \text{ mm}$
Future and conclusions

• need $\gamma\gamma \rightarrow SM$ processes included

• Isajet allows for production of a variety of SM and SUSY processes including beam polarization, brem/beamstrahlung, decay MEs, $|\tau u_L/\tau R|$-decays, ...

• any future improvements usually depend on whether any one wants them implemented...