JAS3, LCIO and hep.lcd

Tony Johnson
ALCPG 2004 Winter Workshop
Topics

- **LCIO**
 - Linear Collider Common IO format

- **JAS**
 - Data analysis tool used for LC physics studies
 - JAS3
 - JAS3 + LCIO
 - JAS + WhizData

- **hep.lcd**
 - Reconstruction and Analysis package for LC physics studies

- **Time will only allow me to discuss recent progress and plans**
LCIO

- A persistency framework for linear collider detector studies
- Project emerged out of the ‘persistency task force’ of the ECFA/DESY workshop
- International collaboration
 - Ties Behnke - DESY/SLAC
 - Frank Gaede - DESY
 - Norman Graf - SLAC
 - Tony Johnson - SLAC
 - Paulo Mora de Freitas - IN2P3
 - Others…
Motivation

Generator

Simulation

Java, C++, Fortran

Geant3, Geant4

Reconstruction

Java, C++, Fortran

Analysis

Java, C++, Fortran

LCIO Persistency Framework

geometry
LCIO Implementation

- use SIO: Simple Input Output
 - developed at SLAC for NLC simulation
 - already used in hep.lcd framework
 - features:
 - simple, portable IO format (based on XDR)
 - on the fly data compression
 - some OO capabilities, e.g. pointers
 - C++ and Java implementation available
 - XML files documenting the data layout

- C++, Java, Fortran libraries
 - hides details of IO details from users
LCIO Status

- Stable release (1.0) now available
 - Supports C++, Java, Fortran
 - Supports:
 - MC Particle description (c.f. stdhep)
 - Simulation Output (tracker hits, calorimeter cells)
 - Prototype/Beam-Test storage (TPC, Calorimeter)
 - Reconstruction Output (e-flow) under development
 - Used by:
 - **Now**: Mokka, JAS3, LeLaps, Brahms, test-beam data
 - **Soon**: LCDG4, hep.lcd Reconstruction
 - Documentation/more info:
 - More about future plans in Ties’ talk.
LCIO Data Catalog

- General purpose dataset metadata catalog
 - Spin-off from JAS3 Grid Work
 - implemented as Grid Service
- Can be used to make web searchable catalog of LCIO data
 - Arbitrary meta-data can be defined and used as search criteria
 - Data can be located anywhere
 - XML file used as input to catalog
JAS3

Data Analysis Tool
JAS3 Status

- JAS3 is successor to JAS2 which has been used for LCD analysis for 3+ years
 - JAS3 (like JAS2) is not specific to LCD analysis
 - Plugins available to enable LCD use since May 2003 simulation workshop
 - Tutorial on web at:
JAS3 Tutorial Covers...

- LCD WIRED Event Display
- Analysis Tools
JAS3 Tutorial Covers...

- Data Analysis
- Running the FastMC
- Jet Finding and Event Shape routines
- Creating N-Tuples
- Not explicitly covered by tutorial, but people have been successful in using...
 - Full Reconstruction
 - Vertex Finding
JAS3 + LCIO

- JAS3 Plugin exists for viewing and analyzing LCIO files
 - Allows to directly open and browse any LCIO file
 - Works with any LCIO file
 - no requirement for prior knowledge of what is being read.
 - Recently updated to support LCIO 1.0
 - (in fact 0.8 or later)
JAS3 + LCIO

- Browse MC Particle Hierarchy

- Perform Data Analysis
 - Can run same code outside JAS using just LCIO and AIDA
JAS3 + LCIO + Event Display

- Can make simple event display using hit positions in LCIO file
 - For more useful event display need to address
 - Decoding CellID
 - Reading geometry
JAS access to WhizData

- Tim Barklow has generated data equivalent to 1 year’s LC running
 - Separate files for each SM physics process
 - Program that combines processes in appropriate ratios, under control of a configuration file
 - (See Tim’s talk on Wednesday for details)
- An interface has been installed into the lcddata01 server at SLAC to allow JAS2 to directly access this data
 - Once the dataset is opened it looks like a normal “stdhep” file
 - You can use all the normal LCD analysis tools available in JAS to analyze the data
JAS access to WhizData

• Existing interface is fine for debugging analysis code
 • Interactive environment provided by JAS not ideal for analyzing a full year’s data

• Developing a web interface which submits analysis to SLAC batch farm
 • JAS analysis code remains unchanged.
JAS3 Status and Plans

- Several releases since May
 - Mostly bug fixes
 - Current version 0.7.3
 - Plan to have “1.0” release in March
 - Main change will be extended documentation

- For LCD work JAS3 has a superset of functionality of JAS2, except:
 - No access to remote data server
 - Being worked on as part of JAS Grid Project
hep.lcd

Reconstruction and Analysis
hep.lcd

- Fast MC
 - smear tracks, create calorimeter clusters
- Reconstruction of fully simulated MC data
 - Architecture allows easy implementation of different algorithms.
 - Track Finding & Fitting
 - Calorimeter Clustering
 - Topological Vertexing
 - Implementation of SLD’s ZVTOP
- Contributed Area
 - Analysis Utilities and sample analyses provided by users
Physics Utilities
- 4-vector, 3-vector classes
- Event shape/Thrust finder
- Jet Finders
 - Many kT algorithms implemented (e.g. Jade and Durham)
 - Extensible to allow implementation of other algorithms

Event Generators
- Diagnostic Generator
 - User-defined particle mix, momenta and vertices.
- Generator framework extensible for other generators
 - PYTHIA, HERWIG, ISAJET, …

Beam Background Overlays
- Take output from full beam simulation
- Feed into full detector simulation
- Overlay backgrounds on signal events at start of reconstruction
 - Adjust timing of hits (for TPC etc.)
 - Sum energy in calorimeter cells
 - Allows to change #bunches/train, bunch timing
hep.lcd

- Works in JAS2, JAS3 or standalone
- Very few improvements since Snowmass
 - Most of the original developers have moved on to other things
 - Long list of potential improvements
 - Should be updated to read/write LCIO files
 - Endcap tracking
 - More Track Finding Algorithms (Pure Projective Geometry)
 - Detector digitization to simulate hit merging, ghosting, electronics noise and dead channels, etc.
 - More clustering algorithms
Conclusions

- JAS2 and JAS3 are both available for LCD physics studies
 - All new work (such as switching to LCIO) will be based on JAS3
 - Encourage users to try JAS3 out (using tutorial) and give us feedback.

- LCIO is progressing well and being adopted for many international LC projects
 - We hold frequent phone conferences to discuss LCIO progress, and encourage others to get involved

- LC reconstruction and analysis package works
 - Needs new infusion of manpower if it is to continue
 - Volunteers welcome!