Laser Development for NLC
Related Photocathode Research

A. Brachmann, J. Clendenin, D.-A. Luh, T. Maruyama

SLAC
Outline

• Motivation

• Flashlamp-pumped Ti:Sapphire laser modifications
 – Laser power
 – Pulse shape (micro-structure plan)

• Thoughts on NLC laser system
 – Techniques
 – Challenges
Motivation

• Explore options for laser development

• Simulate NLC beam conditions for:
 – Continuation of NLC related photocathode research
 – Diagnostics R&D (Letter of intent to SLAC’s EPAC)
Flashlamp-pumped Ti:Sapphire Laser System

- Used for polarized e- beam at SLAC since 1993
- Pulse length ~ 300 ns
- Power ~ 300 - 500 μJ
- Stability 0.5 – 0.8 % Amplitude jitter
- Operation at 120 Hz
- Last action of injector laser system was E-158 experiment
- Copy of laser system and polarized e- gun exists in Laser- and Gun Development Lab
Q-switched Cavity and Pulse Slicing Setup

Cavity

Ti:Sapphire rod

PBS PC3 PBS Diagnostic

OC PC1 BRT PC2 EM

Cavity
Successful Modification to Q-switched Operation

- Intracavity Pockels cell to generate hold-off condition for several hundreds of ns during ~15 μs long flashlamp pulse

- Slow Q-switching allows power and pulse length control

- Achieved peak power of ~ 5 mJ in ~ 200 ns (25 kW)

- External pulse slicing to select Q-switched pulse

\[t_0 \quad 15 \, \mu s \quad t \]

- Q-switched laser pulse
- Pockel’s cell pulse
- Un-q-switched laser pulse
- Flashlamp pump pulse
Pulse shape comparison

Photodiode amplitude [V]

time [µs]

-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0

un-q-switched
q-switched
Pulse shape control using two Pockels cells

- Control of hold-off time
- Control of duration and time shape of pulse release
- Control of timing in relation to ‘long-pulse’
- Resulting Q-switched pulse length > 300 ns
Stability of Q-switched pulse meets NLC specs

Histogram of Photodiode signal (GADC counts)

- **MEAN**: 2167.43
- **STD**: 11.15
- **STD/MEAN*100%**: 0.51
Beam profile – multimodal structure

Q-switched

‘Long – Pulse’
Micro-structure of Q-switched pulse
Current increased by Q-switching the laser

SVT-4353
780nm, 14mmØ

With Q-Switching
Without Q-Switching
Electro-optical modulation to generate micro-structure

- **Conventional Pockels cells**
 - require kV Voltages for switching
 - Commercial pulsers do not operate in the MHz – GHz range

- **Alternative: EO modulators**
 - composed of multiple EO crystals (4-6) available up to GHz range
 - Half-wave voltage of assembly: ~ 100 V
 - Suitable RF amplifiers available (Amplify SLAC 714 MHz)
 - Sinusoidal pulse train
 - Modulation depth increases, transmission decreases with increasing crystal number
 - Small aperture (2-3 mm); damage threshold concerns
 - External of cavity \(\rightarrow\) loss of 50% of laser power
 - Intracavity \(\rightarrow\) Cavity losses
NLC source laser power requirements

- Laser power (P) is driven by required electrons/pulse and QE of Cathode

\[P = \frac{hc}{\lambda} \frac{e^-}{pulse} \frac{e^-}{QE} \]

- For \(1.5 \times 10^{10} \) e\(^-\) per micro-bunch and QE = 1% at 800 nm: 0.37 \(\mu \)J laser energy per micro-bunch at cathode

- Train 192 micro-bunches in 270 ns: ~ 71 \(\mu \)J

- → Laser energy overhead for pulse shaping, transmission losses etc. required
NLC source laser (I)

Micro-structure

• Mode-locked system
 – 357 MHz / 714 MHz cavity \((f = c/2L)\)
 – Double Rep.-Rate (interferometer)
 – EO selection of 270 ns pulse train
 – Pulse stretching of pulse train
 – Diode pumped multi-pass amplifier
 – Laser material: Ti:Sapphire, Cr:LiSAF

• ‘Long–pulse’ Laser
 – ‘Flat–Hat’ shaping of long pulse
 – EO modulation to generate micro-structure

Challenge (for all cases):
Rise and fall time of micro-pulses
NLC source laser (II)

Required R&D

- **Micro-structure**
 - Fall and rise times
 - Flexible Micro-Pulse length

- **Pulse train amplification**

- **Stability**
 - Q-switched flashlamp-pumped Ti:Sapphire laser system has been demonstrated to operate at 0.5 % rms and less intensity jitter.
 - Effort on intensity stability depends on amplifier pumps \(\rightarrow\) Flashlamps / Diodes
 - Timing
 - Stabilization Techniques
 - Feed-forward / feed-back schemes
 - Nonlinear stabilization are possible but require laser power overhead

- Some R&D might be combined with LCLS drive laser development
Laser Development for RF gun at Tesla (I)

Specifications[*]:

- Micro-pulse length at Gun: 2 ns
- # Micro-bunches: 2820
- Bunch Spacing: 337 ns
- Pulse length: 950 µs
- Repetition rate: 5 Hz
- Phase stability: 200 ps (rms)
- Energy stability: 5 % (rms)

[*] Tesla TDR
Laser Development for RF gun at Tesla (II)

• Development of two laser systems:
 – Unpolarized e\(^-\) beam using Cs\(_2\)Te Cathode – UV
 – Plans for polarized e\(^-\) beam (GaAs Cathode) – 800nm

• Much progress of UV laser system development

• Options for 800 nm laser (GaAs cathode):
 – Mode-locked Ti:Sapphire system
 – Mode-locked Cr:LiSAF or Cr:LiCAF (LiSrAlF\(_6\):Cr\(^{3+}\), LiCaAlF\(_6\):Cr\(^{3+}\))
 – OPA conversion of 2\(^{nd}\) and 3\(^{rd}\) harmonic of existing system