Thin Silicon R&D for LC applications

D. Bortoletto
Purdue University

- Status report
- Hybrid Pixel Detectors for LC
- Pixel micro-vertex r=1.5 cm -6 cm (VTX)
- Time Projection Chamber (TPC) provides not only good $\Delta p/p$ but also excellent dE/dx
- Silicon tracker (SIT) in barrel (to improve $\Delta p/p$)
- Silicon disks (FTD) and forward chamber (FCH) provide tracking in the forward region
CCD are the default option in the barrel
- small pixel size ≈ (20 μm)^2
- excellent spatial resolution (<5 μm)
- Slow readout (R&D)
- Concern about radiation hardness (R&D)
- Cooling

DEPFET, MAPS

5 layers, 0.1% X_0/layer
Thinning Si bulk to 50 μm

4 layers, 0.2% X_0/layer
Thin Hybrid Pixels

Hybrid Active Pixels

- Advantages:
 - fast time stamping
 - sparse data read out
 - excellent radiation tolerance.

- Further improvements are needed for:
 - point resolution, which is currently limited by the pixel dimensions of 50 µm × 300 µm limited by the VLSI. Can be improved by using interleaved pixel cells which induce a signal on capacitively coupled read-out pixels
 - reduction in material (thin silicon)

- Interesting for the FTD ???

Purdue is collaborating with J. Fast, S. Kwan, W. Wester and C. Gingu at Fermilab on LC effort. Proposal was submitted to the NSF.
Interleaved pixels

- Work has been done by Caccia, Bataglia, Niemiec et al.

- Structures with: 60 μm implant width, 100 μm pixel pitch, 200 μm readout pitch yield resolution:
 - Interleaved pixels (max charge sharing): 3 μm
 - Readout pixels (min charge sharing): 10 μm

- New prototypes with Pixel pitch 25 μm x 25 μm and 25 μm x 50 μm should yield improved performance

\[
\text{readout pitch} = n \times \text{pixel pitch}
\]

- Large enough to house the VLSI front-end cell
- Small enough for an effective sampling
TESLA: Forward tracking

- Layout of a forward pixel layer
- Layout of a forward strip layer

Material minimization is important
LC: tracking

- **Gaseous detector (TPC-TESLA):**
 - Large
 - many samplings/track
 - dE/dx

- **Silicon option NLC:**
 - Small
 - 5 samplings/track
 - No dE/dx
 - Reduce volume of Ecal (SiW)
 - SD thin achieves good momentum resolution
 - 3 thin inner layers (200 µm)
 - 2 outer layers (300 µm)
Thin silicon R&D at Purdue

Technical problems:
- Manufacturing of thin devices is difficult
- Thinning after processing is difficult
- Industry has expressed interest in thin silicon devices
- Collaboration with vendors is critical

How thin:
- The m.i.p. signal from such a thin, 50µm, silicon sensor layer is only ~3500 e-h pairs.

R&D at Purdue has started last year. We got quotes from two vendors: Sintef and Micron

Sintef: minimum thickness 140 µm on 4 inch wafers

Micron: 4" Thickness range from 20µm to 2000µm, 6" Thickness range from 100µm to 1000µm
Thin silicon R&D

- We have selected Micron and we are exploring both n-on-n and p-on-n options.
- We expect to receive thin silicon strips sensors soon (fabricated with CDF-L00 masks)
- We will compare: 150, 200 and 300 µm thick strip detectors performance using the SVX4 chip developed for the so called “run 2b”
- Pixel masks have been designed. Each 6” wafer will contain:
 - Several pixels sensors matching the CMS ¼ micron chip (100 µm × 150 µm)
 - RD50 PAD structures for SLHC
 - Test structures to study bump bonding
- Sensors should be available for first tests in about 6 months.
Masks (6”) are fabricated and processing (oxigenation) is starting this week. Devices out of fabrication within 3-4 months.
Area is dominated by CMS pixel devices compatible with the 0.25 µm chip.
Circled in red the RD50 structures (diodes)
RAL p-on-n pixels & Micron n-on-p pad detectors
As usual diodes and other test structure for process control
Guard ring design:
- Limits lateral extension of the depletion region
- Prevents breakdown at the device edge
- 11 guard ring design implemented in SINTEF 1999 submission achieved NO BREAKDOWN up to >800 V after irradiation to $\phi = 6 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$

n$^+$-on-n option:
- Allows operation of un-depleted sensors after type inversion
- N-side pixel isolation
 - P-stops (CMS)
- SINTEF 1999 showed that F design was promising
Detail of a thin strip detector
Conclusions

- Material minimization for LC applications makes thin silicon development very interesting.
- Thin silicon is also more rad-hard ⇒ Synergy between our LC interest and LHC commitments.
- Several thin silicon strip and pixel sensors will be available to study:
 - Mechanical stability
 - Bump bonding feasibility
 - Readout and geometry not yet optimal for LC application
 - Simulation studies are needed to guide this effort and to provide input for future submissions and optimize geometry.