Tracker Performance Benchmarks for High-pT Tracks

Richard Partridge
Brown University

ALCPG Winter Workshop @ SLAC
January 7, 2004
Performance Benchmarks

- How do we know a detector design is “good enough”?
- As good as possible is not necessarily the right answer
 - Resources are always limited
 - Heroic efforts in one system can lead to performance compromises in other systems
 - The most successful detectors are usually those whose design is well matched to the physics

- Performance benchmarks can play a useful role in deciding whether a design is good enough

- For the outer tracker, need performance benchmarks for:
 - Momentum resolution for high-pT tracks – focus of this talk
 - Momentum resolution for low-pT tracks (especially for b/c tagging)
 - Long-lived decays (KS, new physics)
 - Coverage (this is one case where “as much as possible” applies)
Z Mass Resolution

- Providing good $Z \rightarrow \mu\mu$ mass resolution is a natural benchmark for high-pT tracker performance
 - Reconstruct ZH events
 - New physics may produce Z’s
 - The Z is the only known high mass state that can be fully reconstructed in an exclusive final state

- Z mass resolution dominated by tracker r-phi resolution
 - Multiple scattering, angle errors are small contributions

- As an example, look at the Z mass resolution for SiDet
 - “Circle” fit to expected hit resolutions
 - Includes correlated multiple scattering errors
 - Momentum resolution agrees with Bruce Schumm’s calculations to within ~20%
 - Assume symmetric Z decays with both muons in the x-y plane
Z Mass Resolution
Symmetric Z decay in x-y plane

- 7 um, 0.5% RL/layer
- 14um, 1.0% RL/layer
A Look at ZH kinematics

- How does excellent Z mass resolution translate into Higgs mass resolution?
- If initial state is known, Higgs mass can be determined from Z kinematics
 - For CM frame
 \[m_H^2 = E_{CM} (E_{CM} - 2E_Z) + m_Z^2 \]

- To estimate the Higgs mass resolution, assume that
 - Collisions take place in CM frame with beam energy known
 - Assume Z decays symmetrically with both leptons in the x-y plane (\(\theta = 90^\circ \))

- Parameterize tracker momentum resolution as
 \[\sigma_{p_T} = \alpha p_T^2 \]

- Extract Higgs mass resolution
 \[\sigma(m_h) = \frac{\alpha (E_{cm}^2 + m_Z^2 - m_h^2)(E_{cm}^2 - 3m_Z^2 - m_h^2)}{8\sqrt{2m_h E_{cm}}} \]
ZH Missing Mass Resolution

Symmetric Z decay in x-y plane, tracker resolution of $\sigma(p_T) = 2.4 \times 10^{-5} p_T^2$

![Graph showing Higgs Mass Resolution](image)

- $E_{cm} = 300$ GeV
- $E_{cm} = 400$ GeV
- $E_{cm} = 500$ GeV

Higgs Mass Resolution (GeV) vs. Higgs Mass (GeV)
ZH Missing Mass Resolution

Symmetric Z decay in x-y plane, tracker resolution of $\sigma(p_T) = 4.2 \times 10^{-5} p_T^2$

- $E_{cm} = 300$ GeV
- $E_{cm} = 400$ GeV
- $E_{cm} = 500$ GeV

Higgs Mass Resolution (GeV)

Higgs Mass (GeV)
What About Beam Energy Spread?

- Initial state has neither fixed energy nor at rest in the detector frame due to beam energy spread
- Get beam energy spread from Mike Woods’ talk at the Cornell meeting
 » http://www.slac.stanford.edu/xorg/lcd/ipbi/cornell03/Woods_energy.ppt
 » Does not include ISR or beamstrahlung (Woods: will add low energy tail)
- For the Higgs missing mass resolution, the variation in initial state energy is dominant
 » Effect of a moving CM depends on decay angle, negligible for decays in the x-y plane

 \[\sigma(m_h) = \frac{\left(E_{cm}^2 + m_h^2 - m_Z^2\right)}{2m_h E_{cm}} \sigma(E_{cm}) \]
NLC-500 Results

[Graphs showing distributions and scatter plots related to NLC-500 results.]
TESLA-500 Results

1. Incident Electron Energy (GeV)
2. Positron Energy (GeV) vs. Z (um)
3. \sqrt{s} vs. Interaction Time
4. $\sqrt{s'}$ (GeV)
ZH Missing Mass Resolution - NLC
Symmetric Z decay in x-y plane, perfect tracker with 0.3% energy spread

Higgs Mass Resolution (GeV)

Ecm = 300 GeV
Ecm = 400 GeV
Ecm = 500 GeV

Higgs Mass (GeV)
ZH Missing Mass Resolution - Tesla
Symmetric Z decay in x-y plane, perfect tracker with 0.1% energy spread

Higgs Mass Resolution (GeV)
- Ecm = 300 GeV
- Ecm = 400 GeV
- Ecm = 500 GeV

Higgs Mass (GeV)
Conclusions

- Good Higgs missing mass resolution requires good tracker resolution
 - Missing mass resolution substantially poorer than Z mass resolution
 - For CM energies well above threshold:
 \[\sigma(m_h) \approx \frac{E_{cm}^2}{2m_Z m_h} \sigma(m_Z) \]

- Beam energy spread contributes to the missing mass resolution
 - For NLC, detector resolution contribution roughly matches resolution contribution from beam energy spread for “less aggressive” SiDet parameters
 - For Tesla, detector resolutions appear to dominate
Open Questions

- Effect of ISR and beamstrahlung on missing mass resolution

- Would a kinematic fit help?
 - Use b directions as kinematic constraints
 - 0C fit when you allow for energy spread in beams
 - Can we determine b-quark directions accurately enough to improve resolution?
 - Now have to worry about FSR, clustering issues, etc.