American LC workshop
SLAC 7-10 Jan. 2004

Beam Tests of a GEM-TPC
at CERN

J. Kaminskia, M. Ballb,
M. Janssenb, S. Kapplera,c, B. Ledermanna,
Th. Müllera, M. Ronand, P. Wienemannb

a IEKP, Karlsruhe
b DESY, Hamburg
cCERN, Geneva
d LBNL, Berkeley
Chamber

Dimensions:
- Length: 25 cm
- Inner diameter: 20 cm
- Flexible readout endcap

Amplification:
- GEMs pitch = 140 µm
- Outer diameter holes = 70 µm
- Inner diameter holes = 60 µm
- Transfer gap: 2 mm
- Induction gap: 2 mm
- Transfer field: 2.5 kV/cm
- Induction field: 3.5 kV/cm

Pad size:
- 1.27 * 12.5 mm²

Number of pads:
- 8 * 32

Experimental setup at CERN East Hall, T7
Trigger, DAQ and FEE

scintillator 1: 4.5*19cm² vertical
scintillator 2: 3*7.3cm² horizontal

trigger rate: one event per spill, but 500 time slices read out to see more beam particles

STAR front-end electronics:
Sampling rate: 19.66MHz
Peak time: 150ns
FWHM of pulse width: 180ns
Beam properties - width

standard orientation horizontal beam width

turning of chamber vertical beam width

Spill length: 550ms

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Software tools

Besides the existing VB-package (s. talk by S. Kappler at Berkeley) a JAVA based analysis tool is being developed.

functionality similar but code developed independently (=> cross check)

New feature: ‘parabolic linear regression’:

\[y = A + B \times x + C \times x^2 \]

=> a measure of the curvature (C)
Monte Carlo

Simulation of cosmic muons passing through detector and trigger counter

Input parameter distributions

Difference: input – analysis results

8mm ≅ 150ns

=> shaping of FEE simulated, but not corrected in analysis

gas parameters of Ar-CH$_4$ 90:10 given by Magboltz

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Cluster properties

hadron beam of 9GeV-particles at CERN
gas:Ar:CH₄ 95:5

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Track properties

hadronic beam of 9GeV-particles at CERN
gas:Ar:CH$_4$ 95:5

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
drift velocity in Ar:CO$_2$:CH$_4$ 93:2:5

![Diagram showing drift velocity](image)

Drift Velocity Analysis

- **Cluster z**
 - Cluster position in z direction in mm

- **Graph**
 - Drift velocity vs. drift field in V/cm
 - Magboltz simulation
 - Measurement

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Spatial resolution

- TESLA TDR Values
- Ar-CO₂ (70:30, 0T, 0.31kV/cm)
- TDR gas (0T, 0.24kV/cm)

Equivalent drift distance to get the same transv. diffusion

Ar-CO₂ (70:30, 0T) - TDR gas (0T) - TDR gas (4T)

Drift distance [cm]

Equivalent drift distance [cm]
Intrinsic single-pad-row efficiency

Improved algorithm
Isolation criterion ensures:
- no crossing tracks
- effect of delta electrons removed

\[\varepsilon_{\text{max}} = (99.3 \pm 0.1)\% \]
Track distortions (I)

hadronic beam of 9GeV-particles at CERN gas:Ar:CH₄ 95:5
Track distortions (II)

Curvature C is plotted vs. x position of track cluster in top row (= track position)

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Track distortions (III)

Slope dependence on drift distance

Slope dependence on GEM voltages

Theoretical interpretation is being developed

middle axis of ‘galaxy’ is fitted with linear fit => slope taken as measure of distortions
Current measurements

Observations:
1.) Current pulse reflects beam time structure.
2.) Nearly 10% feedback at low GEM voltages.
3.) Larger feedback at higher drift fields.
4.) Dependence on E_D and V_{GEM}

$$f = rac{E_D}{E_i} \times 16.0 \times \exp(-U_{GEM}/258.4V)$$

Prepared by J. Kaminski
IEKP, Karlsruhe

Presented by M. Ronan
LBNL, Berkeley
Conclusion

Detector was tested in a high rate hadronic beam => no problems were observed

Intrinsic single-pad-row efficiency plateau of (99.3 +/- 0.1)\% was reached for all gases.

Efficiency plateau starting at effective gains of 2500.

Spatial resolution were between
- 63\mu m in Ar:CO_2 (4cm drift) corresp. to 10cm drift in TDR gas (4T)
- 190\mu m in TDR gas (6cm drift,0T) corresp. to 250cm in 4T

Track distortions due to space charges inside the drift volume observed and under study.