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Outline

ACE3P – Parallel Finite Element Codes

Progress in T18vg2.6 Dark Current Simulation

Low RF Heating Input Coupler for HG Structure

Cavity Optimization
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MP/DC Simulation Using Track3P Module

• 3D parallel high-order finite-element particle tracking
• Using RF fields obtained by Omega3P (resonant mode), S3P

(traveling wave) and T3P (transient fields)
• Curved surfaces for accurate surface fields
• Emission models include thermal, field and secondary

• Benchmarked with measurements
– Rise time effects on dark current for an X-band 30-cell

structure
– Prediction of  MP barriers in the KEK ICHIRO cavity
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MP and DC Simulation Using Track3P
Multipacting Simulation
• Analyze resonant conditions – location, order and type
• Calculate multipacting map using impact energy and SEY data

Dark Current Simulation
• Track Field Emitted (FN) & Secondary Electrons

• Analyze accumulated effects of DC current & power
– DC current monitor
– DC surface power monitor
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CLIC T18vg2.6
Dark Current simulation
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T18vg2.6 Structure

• This structure is being tested at KEK and SLAC
• Comparison between measurement and

simulation in progress
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T18 Structure Fields

Higher B field at the output end,
not as significant as E field

Es Bs

Structure tapered: higher
E fields at output end

RF fields obtained using S3P with surface loss
S11=0.014;    S22=0.032;    S12=0.82
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Dark Current Simulation

• Intercepted electrons deposit energy into the wall and
result in heating.

• Captured electrons are accelerated downstream and may
induce IP background.

Emitted from
iris #6
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Dark Current Heating

Dark Current Heating
• Interception concentrated in high E region around

iris
• Impact energy could be as high as a few MeV
• Depth of energy deposit ~ 1-2 hundred microns
• Significantly higher heating at the output end
• Heating distribution correlate well with breakdown

rate

RF Pulse Heating
• High on the outer wall where electric field is “low”.
• Depth ~ skin depth
• Temperature rise is around 250C at 100MV/m,

200ns pulse length
• At Eacc=80 MV/m; (Hs/Ea~0.004),

Power_max=1.4 GW/m2Yohta Nakai JJAP-2-743

High energy electron
penetration into material

Dark Current Heating distribution RF Heating distribution

Assumed emitters uniformly distributed. In
reality, most likely clusters of emitters, result in
local hot spots.

Sharon Lee
ICSE2006
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High Power Test Data - Breakdown Distribution
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• Breakdown rate significantly
higher at the output end

• Good correlation with field
enhancement and dark current
heating at the output end
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Dar Current Measurement & Comparison with
Simulation

Schematic of KEK high power test and dark current
measurement

SLAC is also setup for similar measurement
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Energy of Captured Dark Current vs Location

Electrons emitted upstream are accelerated to
higher energy (monitored at output end).

Electron energy as function of
emission location.

• Eacc=97MV/m.
• Higher cell number indicates

downstream location
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T18_VG2.4_Disk_#2
Dark current spectra measured 18 June 2009
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Dark Current Spectrum Comparison

“Certain” collimation of beampipe on dark current is considered in
simulation data. More detailed analysis Needed.

Spectrum from Track3P
simulation, 97MV/m gradient.

Measured dark current energy
spectrum at downstream (need to
scale by 1/(pc)
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Individual Field Emitter

• Field emission current density based
on FN can be significant

– with beta=50, Eacc=100 MV/m,
– Jpeak ~1013 A/m2

• Uniform emission (with typical beta)
result too high in current

• Need to study effects of individual
emitters Micron size

emitter

Localized
heating ?
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• In progress
– Realistic assumption of emitter parameters –

size & density …

– More detailed analysis and comparison with
measurement of captured dark current
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Structure Design

Low H-field Enhancement Coupler
For High Gradient 3-cell Test Stack
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Fat-lip Coupler

Large rounding lead to “thick” iris -> large opening –> field enhancement

R_b

R_a

RF heating
Enhanced at
the iris
rounding

Use large radius
to reduce field
enhancement
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Coupling Iris: two arcs
(elliptical – hard to calculate tangential point)

Low Field Enhancement Coupler
Thin Iris Shape With Large Rounding

R10
R1
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Low Field Enhancement Coupler
For 3-Cell Test Stack

Hs/Ea=3.90 (A/m)/(MV/m)
Hs0/Ea=3.23 (A/m)/(MV/m)
(dHs/Hs0 = 1.21)

Hs/Ea=3.99 (A/m)/(MV/m)
Hs0/Ea=3.35 (A/m)/(MV/m)
(dHs/Hs0=1.19)



Zenghai Li                         July 8, 2009

Choke Cell Coupler With “no” Field Enhancement

BE

• No Field enhancement
• Choke parameters need to be optimized to avoid

multipacting and other side effects
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Finite Element Optimization Tool for
Structure Design and Optimization



Zenghai Li                         July 8, 2009

Cavity Design through Optimization
Choke cavity as example
PDE-constraint optimization
- Objective function is specific to design goal
- Design variables are the shape parameters
- Quasi-Newton method (BFGS) may be used

(Initial design by Valery
Cavity model by S. Pei)
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Shape Optimization

d: shape parameters,
e: eigenvector, k: eigenvalue,
t, , and  are adjoint variables (Lagrange multipliers)

Lagrangian:

Objective Function -- the weighted least-squares fit
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Complex Nonlinear Eigenvalue Problem

• With finite-element discretization
• The eigenvalue problem:

• Frequency:

• External Q:

• Fields:

Page 28



Zenghai Li                         July 8, 2009

Optimality Conditions

Adjoint equations

Inversion equations

State equations

d: shape parameters,
e: eigenvector, k: eigenvalue,
t, , and  are adjoint variables
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Design Parameters
Optimization goals:
- Set accelerating mode frequency to 11.424 GHz.
- Satisfy field flatness for the accelerating mode.
- Maximize external Q for the accelerating mode.
- Minimize external Q value for the higher order modes (HOM).

Shape parameters:
- Design variables are
CAD parameters.

- 7 middle cells are identical.
- Parameters have simple
bounds.
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Optimized Shape of Choke Cavity

Initial design Optimized design

Optimized shape parameter changes in microns
Cell1 Cell 2-8 Cell 9

r4 r2 r3 r4 z1 z2 z3 r4
0.5 -1219 382 -7.5 1771 583 224 -0.2
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Choke Cavity – Initial vs Optimized

Accelerating Mode
Acc. Frequency = 11.423875 GHz (initial)
Acc. Frequency = 11.424012 GHz (optimized)

Qacc = 7.508 e9   (initial)
Qacc = 1.400 e10 (optimized)

Initial Optimized

Higher order modes: Q values decreased by factor of 5

Q values for High Order Modes
Initial 305.55 190.64 95.86 26.38 28.53 31.30
Optimized 41.67 63.15 45.84 16.29 16.46 9.80
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Choke Cavity - Optimized Cavity Performance

High gradient choke mode structure optimized to reduce wakefield
effects of higher-order dipole modes
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Summary

Track3P is a parallel multipacting and dark current simulations
code based on finite element mesh. It provides an effective tool
for observing quantities inside structure such as (effect of) dark
current intercepted by interior wall of a high gradient structure

Progress is being made in simulating CLIC T18 structures using
Track3P. Preliminary comparisons with measurement performed

Low surface field coupler developed for high gradient test
structures

Advanced optimization tool being developed for structure R&D


