

The CLIC way to a multi-TeV linear collider - Basic features

- High acceleration gradient (100 MV/m)
 - ✓ "Compact" collider overall length @ 3 TeV < 50 km</p>
 - Normal conducting accelerating structures
 - ✓ High acceleration frequency (12 GHz)

• Two-Beam Acceleration Scheme

- Cost effective, reliable, efficient
- Simple tunnel, no active elements
- ✓ Modular, easy energy upgrade in stages

R. Siemann Symposium and ICFA Mini-Workshop

CLIC schematic layout @ 3 TeV

R. Siemann Symposium and ICFA Mini-Workshop

CLIC RF power source

CLIC schematic layout @ 3 TeV

The CLIC scheme - What does the RF Power Source do ?

The CLIC RF power source can be described as a "black box", combining very long RF pulses, and transforming them in many short pulses, with higher power and with <u>higher frequency</u>

Full beam-loading acceleration in TW sections

Beam combination/separation by transverse RF deflectors

Beam combination/separation by transverse RF deflectors

Counter flow distribution

Counter propagation from central complex

Instead of using a single drive beam pulse for the whole main linac, several ($N_s = 24$) short ones are used. Each one feed a 900 m long sector of TBA.

(DLDS-like system)

Counter-flow distribution allows to power different sectors of the main linac with different time bins of a single long electron pulse.

The distance between pulses is 2 $L_s = 2 L_{main}/N_s$. The initial drive beam pulse length is equal to 2 $L_{main} = 140 \mu s/c$.

Use of CLIC-like drive beam in Plasma Wakefield Accelerator

<u>A. Seryi – PAC 09</u>

R. Siemann Symposium and ICFA Mini-Workshop

Drive beam time structure - initial

Drive beam time structure - final

R. Siemann Symposium and ICFA Mini-Workshop

Gap creation & first multiplication $\times 2$

$$L_{delay} = n \lambda_0 = c T_{sub-pulse}$$

R. Siemann Symposium and ICFA Mini-Workshop

CTF3 preliminary phase (2001-2002)

RF injection in combiner ring in CTF3 preliminary phase (2001-2002)

The CLIC Test Facility CTF3

is a small scale version of the CLIC drive beam complex

R. Corsini, 7.7.2009

R. Siemann Symposium and ICFA Mini-Workshop

CTF3, Drive Beam Efficiency and use in PWFA-LC

Ankara University (Turkey) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey) IRFU/Saclay (France) Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) Instituto de Fisica Corpuscular (Spain) INFN / LNF (Italy) J.Adams Institute, (UK) JINR (Russia) JLAB (USA)OsloKarlsruhe University (Germany)PSI (\$KEK (Japan)PolytLAL/Orsay (France)RRCALAPP/ESIA (France)RoyaNCP (Pakistan)SLACNorth-West. Univ. Illinois (USA)Upps

Oslo University (Norway) PSI (Switzerland), Polytech. University of Catalonia (Spain) RRCAT-Indore (India) Royal Holloway, Univ. London, (UK) SLAC (USA) Uppsala University (Sweden)

R. Siemann Symposium and ICFA Mini-Workshop

- Provide RF power to test accelerating structures and components
- ✓ Full beam-loading accelerator operation
- ✓ Electron beam recombination by RF injection at high current
- ✓ Safe and stable beam deceleration and power extraction
- ✓ Two-beam acceleration scheme

Drive Beam linac – high current, full beam loading operation

R. Siemann Symposium and ICFA Mini-Workshop

Method: - Measure RF power, current and initial/final beam energy.

- Switch off one klystron at a time and measure relative energy in spectrometer 10.

- Check consistency and compare with calculations.

measured RF-to-beam efficiency: 95.3 % Theory: 96% (~4 % ohmic losses)

3000

250

2000 -00

R. Siemann Symposium and ICFA Mini-Workshop

Fast phase switch from SHB system (CTF3)

3 TW Sub-harmonic bunchers, each fed by a wide-band TWT

Streak camera image

 $8.5 \cdot 666 \text{ ps} = 5.7 \text{ ns}$

0,50

0,75

1.0

0,25

Delay Loop – beam current multiplication x 2, hole creation

Combiner Ring

R. Siemann Symposium and ICFA Mini-Workshop

Fast vertical beam instability in CTF3 solved by new deflectors with strong damping of the vertical deflecting mode and larger hor./vert. detuning

R. Siemann Symposium and ICFA Mini-Workshop

Without the losses from the fast vertical beam instability (plus improved optics control and tuning tools) it is now possible to circulate the 3 A beam with very small losses for hundreds of turns.

Combiner Ring

Bunch re-combination of a 3 A beam with factor four current increase had been demonstrated – 12 A reached.

(DL still by-passed, and limited by RF pulse length)

R. Siemann Symposium and ICFA Mini-Workshop

CLIC Power Flow

R. Siemann Symposium and ICFA Mini-Workshop

CLIC Power Consumption Breakdown

	Grid
Main beam magnets	power
	[MW]
Injector linacs	1.2
Positron pre-damping ring	0.8
Electron pre-damping ring	0.3
Damping rings warm magnets	2.2
Damping ring SC wigglers	0.5
Surface to tunnel transfer	2.1
Return lines	1.0
Turn arounds	2.2
Main linacs	8.4
Beam delivery system	3.0
Spent beam lines	4.1
Main beam magnets total	25.8
Main Beam Injector RF	
Positron production linac	0.5
Main beam linacs 2.4 and 9 GeV	1.8
Pre-damping rings	6.5
Damping rings	6.5
Main beam injector RF total	15.2

	Grid
Drive beam magnets	power
	[MW]
DB Accelerator	0.4
Delay loops	1.2
Combiner rings 1	1.3
Combiner rings 2	1.3
Surface to tunnel transfer	1.3
Return lines	0.3
Turn arounds	32.7
Decelerators	7.7
Beam dumps	0.5
Drive beam magnets total	46.7
Drive beam magnets total Drive beam linac RF	46.7
Drive beam magnets total Drive beam linac RF Modulator auxiliaries	46.7 7.8
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power	46.7 7.8 255.5
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total	46.7 7.8 255.5 263.3
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment	46.7 7.8 255.5 263.3
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment instrumentation	46.7 7.8 255.5 263.3 5.0
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment instrumentation Detector	46.7 7.8 255.5 263.3 5.0 15.0
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment instrumentation Detector Water systems	46.7 7.8 255.5 263.3 5.0 15.0 9.8
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment instrumentation Detector Water systems Ventilation systems	46.7 7.8 255.5 263.3 5.0 15.0 9.8 8.8
Drive beam magnets total Drive beam linac RF Modulator auxiliaries RF power Drive beam linac RF total Beam, RF and alignment instrumentation Detector Water systems Ventilation systems Tunnel infrastructure	46.7 7.8 255.5 263.3 5.0 15.0 9.8 8.8 8.8 2.5

Table 11: CLIC 3 TeV power consumption

Initial transient

Energy spread in full beam-loading regime

- Any drive beam current variation will result in a corresponding variation in final drive beam energy
- That's why in CLIC we accelerate a long (140 μ s) constant current drive beam pulse, and only split/recombine it after acceleration

Energy spread in full beam-loading regime

Energy spread in full beam-loading regime

Drive beam pulses with duration > t_{fill} spaced by Δt > t_{fill}

"Short" steady states

Energy spread in full beam-loading regime

Drive beam pulses with duration < $t_{\rm fill}$ spaced by Δt < $t_{\rm fill}$

quasi steady-state ("filtering")

R. Siemann Symposium and ICFA Mini-Workshop

1.000

0.100

R. Siemann Symposium and ICFA Mini-Workshop

R. Corsini, 7.7.2009

If the beam is split/recombined like in the CLIC scheme, there is an additional filtering effect

Some drive beam issues for multi-stage PWFA Linear Collider

Control of drive beam losses

Machine protection system

CLIC-like drive beam as a PWFA collider driver – time structure

animation of beam drive distribution: