KEK test area plans

Shuji Matsumoto Accelerator Lab., KEK

Two X-band high power stations in KEK

<section-header>

Modulator and twin klystrons

Test area in Shield-A

KT-1 (50MW)

Klystron Test, Small experiments (in Lead shield box)

What to be pursued by KEK X-band

- Practical structure evaluation and develop high power system
 - Aiming at CLIC design
 - Minimum required power and pulse width are ~ 75MW and ~ 240ns.
 - Nextef is our only choice to conduct this work. These parameters are just we are operating. Introducing power compression system is needed beyond these.
- Basic research on high gradient
 - Study with: Single-cell, Narrow waveguide, C10, CD10, ...
 - Required the power as low as10MW to very high >>100MW with pulse width ~500ns.
 - KT-1 is suitable for these works . We may use Shield-B with Nextef klystrons.
- Development of components and devices
 - load, directional coupler, ..., Klystron, ...

Pulse Compressor (circular TE11 / TE21) proposed by M. Yoshida.

Gycom High-Q Cavity PC

Our colleague, Sergey Kuzikov from GYCOM, Nizny-Novgorod, Russia have proposed extremely interesting design of the cavity pulse compressor. The main features:

Big cavity volume with mixed-modes oscillation will provide enough Q-factor (~ 2×105).

#The nature of the mixed-modes field pattern allows for the damping of the spurious modes , as well as for installation of the sufficient pumping of the cavity volume.

#The clever idea - to use the iris position as a frequency tuner will keep the quality of the modes mixing unperturbed during tuning procedures.

#The overall design looks very simple and inexpensive.

#He confirmed that they are interested in building the device for us.

Movable

irises

12 GHz, cavity-based pulse compressor (SLED or BOC); compression: 1500 ns -> 300 ns

Proposal Pulse compression systems

Construct Yoshida PC of "final version" (double-mode version). The compressed power goes to Shield-A for the structure test.

Test of High-Q Cavity PC at Nextef. The (maximum) power of 50MW with 1.5us will be available for the test.

High-Q Cavity PC may be installed at KT-1.

Pulse compressors

Nextef		KT-1	
Source RF	Compressed (Gain=3)	Source RF	Compressed (Gain=2.5)
1500ns	300ns	1500ns	300ns
25MW X 2	150MW	25MW	60MW
	Yoshida Delay Line PC with Double Modes		Gycom High-Q cavity PC

Comment : Practical operation limit of PPM Klystron

Plots of Pulse Shortening Events on Power / Width plane.

TE11/TE21 PC Configuration

Reconfiguration of transmission lines

Nextef Area as of July 3.

Nextef Planning

Nextef Configuration

Conclusion

Nextef

Sheild-A:

•We continue X-band structure tests.

•Delay Line Pulse Compression system will be installed in FY 2009. 150MW 300ns pulse is expected.

• DLPC starts operation in early summer 2010 after a 2m-long C-band structure test. (The test starts in April 2010. Note the test occupies the delay line.)

Sheild-B:

•X-band power line will be established from Nextef klystrons.

KT-1

Continues tests of RF loads as well as klystron test.Install Gycom Cavity PC after its test(proposal).

