

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Microfabrication Techniques for Accelerators

A. Nassiri, R.L. Kustom, D.C. Mancini

Argonne National Laboratory

Symposium in Memory of Robert H. Siemann and ICFA Mini-Workshop on Novel Concepts for Linear Accelerators and Colliders

Outline

Terminology

- Microfabrication methods and tools
- DXRL at APS
- Summary

Terminology and relative sizes

Microfabrication methods and tools - MEMS

- Basic idea is to find a way to circumvent the limitations imposed by normal machining.
- MEMS (Micro-electrical-mechanical systems)
 - Fabricated at micron to millimeter sizes using a single silicon substrate
 - Used to fabricated sensors, motors, actuators, mirrors
 - Wide range of industrial and consumer applications
 - MEMS accelerometers for automobile airbag systems
 - MVED applications
 - MEMS-based reflex klystron (JPL)

A salient-pole electrostatic ally actuated micromotor made from polycrystalline silicon using surface micromachining techniques.

A mechanical gear which is smaller than a human hair

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

MEMS fabrication process

- Wet Etching
 - Isotropic wet etching uses solutions of hydrofluoric, nitric, and acetic acid, HNA.
 - It produces hemispherical shaped cavities below the mask aperture.
 - Lateral etch rate is about the same as vertical etch rate
 - Anisotropic wet etching of silicon is done using either potassium hydroxide, KOH, or a solution of ethylene diamine and pyrocatechol, EDP
- Dry Etching
 - It provides a better control and faster etch rates than either isotropic or anisotropic wet etching.
 - It refers to the process of reactive ion etching (RIE)
 - Ionization of fluorine-rich reactive gas in a plasma chamber

Microfabrication methods and tools – Laser Ablation

- Laser ablation micromachining uses the very high power density and very short pulse of the laser to vaporize the surface of a material without transferring heat to the surrounding area.
- It can be applied to a a wide variety of materials including metals, ceramics, semiconductors and plastics.
 - The depth of the etch can only be done by knowing the material removal rate per pulse and counting pulses or by external measurement.

Pre-ablation

SEM images of an MgB₂ ablated at 193 nm @12 J/cm²

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Microfabrication methods and tools – EDM

- Electric Discharge Machining uses large electric field arcs across the gap between the two metal surfaces.
- The arc raises the local surface temperature to between 8,000C and 12,000C and melts a roughly hemispherical volume on both the electrode and the work piece.
- Since the surface is formed by millions of small craters, it has a very poor surface finish.
- This can be improved considerably with finishing cuts, smaller wire diameter, lower electric fields.
- It needs additional treatment for low RF loss applications.
- Dimensional accuracy for EDM is roughly the same as precision machining.
- EDM gains in accuracy from its noncontact material removal, compared to normal machining.
- Disadvantage: variation in height of the crater-defined surface.
- New wire-handling and tensioning systems have allowed EDM wire diameters to ~ 20μ m (as compared to 0.3 mm 0.03 mm), μ EDM.

Slide courtesy: MicroBridge Services, Ltd

Microfabrication Techniques for Accelerators

Microfabrication methods and tools – LIGA

- LIGA is a process in IC fabrication which involves lithography, electroplating, and molding on a given substrate. (Lithographie, Galvanoformung und Abformug)
- LIGA allows structures to have heights of over 100 µm with respect to the lateral size.
- LIGA fabricates High Aspect Ratio Structures (HARMS).
- The ratio between the height and the lateral size is the aspect ratio (e.g. 100:1)
- Ideal for fabrication of RF resonant cavities with frequencies from 30 GHz to 1 THz.
- Unlike semiconductor lithography, LIGA uses very thick resist films.

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Deep X-ray Lithography and Electroforming

- Silicon wafer, 250-µm-thick
- Gold absorber, 45-60-µm-thick
- PMMA, 1 -3-mm-thick
- Copper base, 50-mm-thick
- Copper plating
- SU-8 LIGA
 - An alternative to PMMA
 - For X-ray LIGA applications, it has a significant advantage:
 - About 200 times more sensitive to X rays than PMMA
 - This drops exposure times by two orders of magnitude.
 - Disadvantage: The etchants that attack the exposed SU-8 also attack the metal surface of the LIGA part.

X-ray Exposure Station at the Advanced Photon Source of Argonne National Laboratory

Scanner

APS Lithography beamline:

- 19.5 keV
- Highly collimated beam (< 0.1 mrad)
- Beam size @exposure station: 100 (H) x 5 (v) mm²
- Using a high-speed scanner (100 mm/sec) for uniform exposure.
- Precision angular (~0.1 mrad) and positional (<1 micron) control of the sample.
- exposure time:
 - 1-mm thick PMMA (100 x 25 mm²) ~1/2 hr
 - 10-mm thick PMMA ~ 2-3 hrs

10

X-ray beam outlet

Antiscatter Grid for Mammography

- Scatter
 - Produces slowly varying background fog
 - Reduces subject contrast
 - Reduces the ability to identify diseased tissues

8 16 24 32 40 48 56 2 8 16 24 3 48 56 4 8 16 24 32 40 48 56 5 8 16 24 32 3 4 5 6 11 12 13 14

Detail of x-ray mask used for obtaining freestanding copper antiscatter grid

Freestanding focused to the point copper antiscatter grid 60 mm x 60 mm in size with 25-µm-wide septa walls and 550 µm period and 2.8 mm tall (grid ratio 5.3).

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Unique benefits of ANL

- APS is one of the very few light sources worldwide suitable for micromechanics with a unique possibility of dynamic exposure for very tall (1-3mm) structures.
- Knowledgeable and experienced staff provides excellent user support.
- X-ray lithography station in Sector 10 is fully operational on a shared bend magnet beamline.
- Long experience in fabricating copper high-aspect ratio microstructures.

3-D Conceptual Planar Structure

PMMA Masks with DXRL: 94 GHz CG¹

Long structure (66 cells)

¹ J. Song, at al., Proc. Particle Accel Conf., Vancouver, B.C., Canada, 1997

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Constant impedance cavity¹

Argonne A. Nassiri

Microfabrication Techniques for Accelerators

Multi-beam Planar Klystron¹

Accelerator on a Substrate

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Comparison of Microfabrication Methods for RF Structures

- Each fabrication method discussed has specific advantages for different materials and geometries.
- Normal machining can produce RF structures up to several hundred gigahertz as long as surface finish and consequent surface losses are not important.
- In resonant structures where surface losses drastically degrade the performance, normal machining is limited to less than 100-GHz structures.
- EDM has similar issues regarding surface losses
 - Can handle hard-to-machine materials. Only conductive materials
- LIGA is effective in a range of frequency defined by
 - Depth to which the photoresist can be exposed
 - 6-mm thick PMMA "routine"

$$f \ge 25 \text{ GHz}$$

- 10-mm thick PMMA soon
- Dimensional accuracy limits of the mask and the diffraction of the light source.
 - Smallest lateral size is 0.2 μm.
 - Aspect ratios can range up to 500.
 - Surface roughness is small (~30 nm).

Characteristics of Microfabrication Methods

	Dimensional Accuracy (µm)	Surface Finish (nm)	Compatible Materials	Litho or Serial Process	Cost per Part	Frequency Range (GHz)
LIGA PMMA	±1	< 200	Metals	Litho	Low	25 - 600
LIGA SU-8	±1	< 200	Metals	Litho	Low	25 - 600
MEMS(WE)	±0.5	< 50	Silicon	Litho	Low	300-3000
MEMS (DRIE)	±0.5	< 50	Silicon	Litho	Low	300-3000
Laser ablation	±2	200-500	Almost any	Litho/Serial	High	100-300
			materials			
EDM	±2	<1000	Conductors	Serial	High	0-300
Normal machining	±8	<1000	Almost any	Serial	Medium/High	0-100
			materials			

Can a "true" 3D structure be realized?

- As attractive DXRL is, it can only fabricate microstructures with vertical wall, which limits their application.
- Although 3D structures can be realized by various LIGA techniques, structures have walls parallel to the incident X-ray.
- To overcome these limitations with the conventional lithography techniques, Two recently new techniques have been developed:
 - A moving mask deep X-ray lithography (M²DXL)¹.
 - *M²DXL* is a technique to fabricate microstructures with controllable inclined or curve wall.
 - A double X-ray exposure technique²
 - 3D is realized by controlling the propagation direction of the PMMA dissolution front. This is achieved by irradiating the whole PMMA surface again without the X-ray mask after the first exposure.

¹ Y. Hirai, et. al, J. Micromech. 17 (2007) ² N. Matsuzuka, et. al, 17th IEEE MEMS, 2004

3D microstructure fabricated by moving mask UV lithography techniques.

1st Exposure 2nd Exposure (with X-ray mask) (without X-ray mask)

Development

20

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Summary

- Technology for a fully integrated design in not (yet) available and not likely in the near future.
- Hybrid design, ala hybrid integrated-electronic circuits, is closer to being available, requires considerable R&D.
- Fabrication challenges of RF structures and circuits
 - Vacuum-sealing and vacuum pumping of circuit with sub-millimeter beam apertures
 - RF losses due to surface roughness
 - $\delta = 200 \text{ nm} @95 \text{ GHZ} and 66 \text{ nm} @1\text{THz} for copper$
 - Need surface roughness less that the skin depth
 - Dimensional accuracy of cavities/circuits and alignment
 - Dimensional accuracy required \propto 1/BW
 - Beam transport and magnetic focusing
 - Heat transfer and structure cooling (microchannel/nanotubes)
 - CW and pulse heating

Microchannel array formed by silicon DRIE

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders

Thank you.

A. Nassiri

Microfabrication Techniques for Accelerators

Novel Concepts for Linear Accelerators and Colliders