Wakefield Suppression for CLIC -

A Manifold Damped and Detuned Structure

Roger M. Jones
 Cockcroft Institute and
 The University of Manchester

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

Wake Function Suppression for

 CLIC -Staff$>$ Roger M. Jones (Univ. of Manchester faculty)
>Alessandro D'Elia (Dec 2008, Univ. of Manchester PDRA based at CERN)
$>$ Vasim Khan (Ph.D. student, Sept 2007)
$>$ Part of EuCard (European Coordination for Accelerator Research and Development) FP7 NCLinac Task 9.2

V. Khan, CI/Univ. of Manchester Ph.D. student pictured at EPAC 08
$>$ Collaborators: W.Wuensch, A. Grudiev (CERN)
Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

Overview

Three Main Parts:

1. Introduction/features of manifold damped and detuned linacs.
2. Initial design indicating required bandwidth and necessary sigma of Gaussian
3. Design tied to CLIC_G-interleaving, zero-crossing
4. Design with relaxed parameters -modified bunch spacing, bunch population etc. Based on moderate damping on strong detuning
5. Concluding remarks

1. Introduction -Present CLIC baseline vs. alternate DDS design

Accelerating Structure

> SLAC/KEK RDDS structure illustrates the essential features of the conceptual design
> Each of the cells is tapered -iris reduces with an erf-like distribution
> HOM manifold running alongside main structure removes dipole radiation and damp at remote location (4 in total)
$>$ Each of the HOM manifolds can be instrumented to allow:

1) Beam Position Monitoring 2) Cell alignments to be inferred

1. CLIC Design Constraints

1) RF breakdown constraint
$\boldsymbol{E}_{\text {sur }}^{\max }<260 M V / m$
2) Pulsed surface heating

$$
\Delta T^{\max }<56 K
$$

3) Cost factor

$$
P_{i n} \sqrt[3]{\tau_{p}} / C_{i n}<18 M W \sqrt[3]{n s} / m m
$$

Beam dynamics constraints

1) For a given structure, no. of particles per bunch \mathbf{N} is decided by the $<a>/ \lambda$ and $\Delta a /<a>$
2) Maximum allowed wake on the first trailing bunch
$W_{t 1} \leq \frac{6.667 \times 4 \times 10^{9}}{N}(V / \mathrm{pC} / \mathrm{mm} / \mathrm{m})$
Wake experienced by successive bunches must also be below this criterion

1. Baseline CLIC_G Design

Structure	CLIC_G
Frequency (GHz)	12
Avg. Iris radius/wavelength $<\mathrm{a}>/ \lambda$	0.11
Input / Output iris radii (mm)	$3.15,2.35$
Input / Output iris thickness	
(mm)	$1.67,1.0$
Group velocity (\% c)	$1.66,0.83$
No. of cells per cavity	24
Bunch separation (rf cycles)	6

No. of bunches in a train 312

Lowest dipole band:
$\Delta f \sim 1 \mathrm{GHz}$
Q~10

Truncated Gaussian :

$\mathbf{W}_{\mathrm{t}}=2 k \mathrm{e}^{-2(\sigma \pi \mathrm{r})} \mid \boldsymbol{\chi (\mathbf { t } , \Delta \mathbf { f }) |}$
where : $\chi(t, \Delta f)=\frac{\operatorname{Re}\left\{\operatorname{erf}\left(\left[n_{\sigma}-4 i \pi \sigma t\right] / 2 \sqrt{2}\right)\right\}}{\operatorname{erf}\left(n_{\sigma} / 2 \sqrt{2}\right)}$
CLIC_DDS Uncoupled Design

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

2. Initial design for CLIC DDS

Red: Uncoupled Blue: Coupled
$f_{\text {uncoupled }} / f_{\text {coupled }}(\mathbf{G H z})$

Solid curves: First dipole
Red: Uncoupled
Blue: Coupled
Dashed curves: second dipole

2. Initial design for CLIC DDS

First dipole Uncoupled, coupled.
Dashed curves: second dipole
>8-fold interleaving employed
$>$ Finite no of modes leads to a recoherance at ~ 85 ns.
$>$ For a moderate damping Q imposed of $\sim \mathbf{1 0 0 0}$, amplitude of wake is still
below $1 \mathrm{~V} / \mathrm{pc} / \mathrm{mm} / \mathrm{m}$
$>3.3 \mathrm{GHz}$ structure does satisfy the beam dynamics constraints
$>$ However, it fails to satisfy RF breakdown constraints.
Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory
3. Gaussian distribution linked to CLIC_G parameters

Cell	a $(\mathbf{m m})$	b (mm)	t (mm)	Vg/c $(\%)$	$\mathrm{f1}$ (GHz)
1	3.15	9.9	1.67	1.63	17.45
7	2.97	9.86	1.5	1.42	17.64
13	2.75	9.79	1.34	1.2	17.89
19	2.54	9.75	1.18	1.0	18.1
24	2.35	9.71	1.0	0.86	18.27

Uncoupled parameters:
 $<\mathbf{a}>/ \lambda=0.11$
 $\Delta f=3 \sigma \sim 0.82 \mathrm{GHz}$
 $\Delta f /\langle f\rangle=4.5 \%$

CLIC_DDS Uncoupled Design tied to CLIC_G Parameters
3. Gaussian distribution linked to CLIC_G parameters

Clearly the wake from the structure pinned to the CLIC_G parameters does not meet the design constraints!

Ref: Khan and Jones, Proc. PAC09

t (ns)

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

CLIC_G parameters

$>$ Systematically shift cell parameters (aperture and cavity radius) in order to position bunches at the zero crossing in the amplitude of the wake function.
$>$ Efficacy of the method requires a suite of simulations in order to determine the manufacturing

[^0]
surface field constraints

$\omega / 2 \pi(\mathrm{GHz})$

t (ns)

Uncoupled parameters

Cell 1

- Iris radius $=4.0 \mathrm{~mm}$
- \quad Iris thickness $=4.0 \mathrm{~mm}, \quad$ Iris thickness $=0.7 \mathrm{~mm}$,
- \quad ellipticity $=1$
- $\mathrm{Q}=4771$
- $\mathrm{R}^{\prime} / \mathrm{Q}=1,1640 \Omega / \mathrm{m}$
- $\quad \mathrm{vg} / \mathrm{c}=2.13 \% \mathrm{c}$

Roger $\cdot \quad \mathrm{vg} / \mathrm{c}=0.9 \% \mathrm{c}$
Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

4. Relaxed parameters tied to surface field constraints

$a+a 1$
Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

4. Relaxed parameters -full cet model

$>$ Dispersion curves for select cells are displayed (red used in fits, black reflects accuracy of model)
$>$ Provided the fits to the lower dipole are accurate, the wake function will be wellrepresented
$>$ Spacing of avoided crossing (inset) provides an indication of the degree of coupling (damping Q)

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7

4. Relaxed parameters (RP)-Spectral fn.

Single non-interleaved structure

Potential Structure for CFT3
Module

8-fold interleaved structure

Eight structures in each CTF3 module

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

Single Structure Wake

Two-fold interleaving

Fails design criterion!

Four-fold interleaving

Eight-fold interleaving

Meets

 design criterion!Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory
4. Relaxed parameters (RP)-Efficiency Calc.

$$
\tau_{p}=t_{b}+t_{\text {fill }}+t_{r}-\left(t_{\text {fill }} \frac{(1-p p)}{2}+t_{r}\left(1-\frac{p p}{2}\right)\right)=246 \mathrm{~ns}
$$

$$
\Delta T \propto \sqrt{\tau_{p}}
$$

$$
\begin{aligned}
& P_{\text {in }}=74.5 \mathrm{MW} \\
& p p=\frac{P_{\text {out }}^{\mathrm{L}}}{\mathbf{P}_{\text {out }}^{\mathrm{LL}}}=\frac{21.12}{37.77}=0.56
\end{aligned}
$$

$$
t_{b}=\frac{8 \times 312}{11.9942}=208.1 \mathrm{~ns}
$$

$$
\begin{aligned}
& t_{\text {fill }}=40 \mathrm{~ns} \\
& t_{\mathrm{r}} \sim 23 \mathrm{~ns}
\end{aligned}
$$

$$
\boldsymbol{\eta}_{\text {CLIC_dDs }}=\frac{\text { beamenergy }}{\text { pulseenergy }}=\frac{I<\text { Eacc }>L_{t_{b}}}{P_{\text {in }}\left(t_{b}+t_{r}+t_{\text {fill }}\right)}
$$

$$
\Rightarrow \boldsymbol{\eta}_{\text {CLIC_DDs }}=23.4 \% @ I=1.13 \mathrm{~A}
$$

$$
\eta_{\text {CLIC_G }}=27.7 \% @ I=1.19 \mathrm{~A}
$$

4. Concluding remarks

$>$ The last two designs (ZC and RP) both meet both the beam dynamics and the breakdown constraints
$>$ The design closely tied to the CLIC_G design requires the bunches to be located on the avoided crossing in the wake. This will need a comprehensive set of beam dynamics simulations in order to ensure realistic manufacturing tolerances are achievable.
$>$ The modified design with relaxed parameters meets both constraints and in particular with full interleaving, experience with NLC/GLC structures leads us to conclude it will lead to relaxed manufacturing tolerances. These initial simulations are in the process of being optimised (efficiency enhancement calcs.)
$>$ These new designs should be verified with experimental testing of wake function (revive ASSET??)

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

CLIC 30 GHz TDS Prediction vs Exp

$>$ Good agreement achieved up to $\sim 2 \mathrm{~ns}$
$>$ Resonance, not included in prediction simulations, at 7.6
GHz , external to structure leads discrepancy between theory/exp.

Ref: I. Wilson et al., Proceedings of the 2000 European Particle Accelerator Conference (EPAC00), Vienna, Austria, 2000

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

Conspectus of NE゙C/GLC Wake Function Prediction and Measurement (ASSET dots)

Refs: 1. R.M. Jones,et al, New J.Phys.11:033013,2009. 2. R.M. Jones et al., Phys.Rev.ST Accel. Beams 9:102001, 2006.

Roger Jones; R. Siemann Symposium and ICFA Mini-Workshop, July 7th - 10th, 2009, SLAC National Accelerator Laboratory

[^0]: tolerances.
 ${ }^{\circ}$ R. Siemann Symposium and ICFA Mini-Worksnop, Juty /tn

