TV/m plasma wakefield accelerator using low charge, ultra-short beam

J.B. Rosenzweig UCLA Dept. of Physics and Astronomy SLAC, ICFA Workshop on Novel Linear Accelerators and Colliders July 9, 2009

Background

- UCLA proposal for ultra-short beams in FEL
 - Single spike operation
 - Breaching attosecond frontier
 - Ultra-high brightness electron beams
- Coherent radiation from ultra-short beams
- Scaling the PWFA to short wavelength
- TV/m PWFA experiment at the LCLS

Ultra-short XFEL pulses: motivation

- Investigations at atomic *electron* spatio-temporal scales
 - Angstroms-nanometers (~Bohr radius)
 - Femtoseconds (electronic motion, Bohr period)
 - Femtochemistry, etc.
- 100 fs accessible using standard techniques
- Many methods proposed for the fsec frontier
 - Slotted spoiler; ESASE; two stage chirped pulse
 - Unsatisfactory (noise pedestal, low flux, etc.)
 - Still unproven
- Use "clean" ultra-short electron beam
 - Myriad of advantages in FEL and beam physics
 - Robust in application: XFEL, coherent optical source, PWAFA...

The "clean" path: ultra-low charge electron beam

- Excellent phase space quality (⊥ and ||)
 - Very low emittance
 - Highly compressible
 - Unprecedented high brightness
- Ultra-short high brightnss beam in FEL
 - Bunch ~ cooperation length; single spike operation
 - Short cooperation length; sub-femtosecond pulse
 - Pedestal free, ultra-short X-ray pulse
- Mitigate collective effects dramatically
 - Coherent synchrotron radiation instability (chicane)
 - Undulator beam-pipe wakes

Ultra-high brightness beams: How?

- Brightness $B = \frac{2I}{\varepsilon_n^2} \propto \frac{Q}{\sigma_t \varepsilon_n^2}$
- Low *Q* in injector: shorter $\sigma_{t'}$ smaller ε
- Velocity bunching at low energy, recover I
- Chicane bunching (1 or 2 stages)
- The rules change much in our favor
 - Low charge makes all manipulations easier
 - Higher brightness gives new possibilities, design application with open imagination...
- Illustrate 1st with original example: SPARX

Photoinjector scaling

J.B. Rosenzweig and E. Colby, Advanced Accelerator Concepts p. 724 (AIP Conf. Proc. 335, 1995).

- Beam at lower energy is single component relativistic plasma
- Preserve optimized dynamics: change Q, keeping plasma frequency (n, aspect ratio) same
- Dimensions scale – Shorter beam... $\sigma_i \propto Q^{1/3}$

- Emittances: Space charge, $\varepsilon_{x,sc} \propto k_p^2 \sigma_x^2 \propto Q^{2/3}$, RF/chromatic aberration, $\varepsilon_{x,RF} \propto \sigma_z^2 \sigma_x^2 \propto Q^{4/3}$, Thermal emittance, $\varepsilon_{x,th} \propto T_c^{1/2} \sigma_x \propto Q^{1/3}$.
- At low Q, $\varepsilon_{x,th}$ dominates (Ferrario WP, SPARC/LCLS)

 $\varepsilon_n(\text{mm-mrad}) = \sqrt{a_1 Q(\text{nC})^{2/3} + a_2 Q(\text{nC})^{4/3} + a_3 Q(\text{nC})^{8/3}} (\infty 0.33 \cdot Q(\text{nC})^{1/3}) \text{mm-mrad}$

 $a_1 = 0.11$ $a_2 = 0.18$ $a_3 = 0.23$

Velocity bunching

- Enhance current at low energy, avoid bending
- Inject near zero crossing
- Apply optimized focusing, manage ε evolution

VB example: SPARX (2008), 1 pC

- $-\varepsilon$ growth manageable
- 1 order of magnitude compression
 -"Thermalized longitudinal phase space;
 limits subsequent compression

Chicane Compression

- Run off-crest in linac, "chirp" longitudinal PS
- Remove chirp with chicane compressor
 - Complicated by thermal energy spread, CSR

Original goal: single spike XFEL operation

• 1D dimensionless gain parameter

$$\rho_{1D} = \left[\frac{JJ(K_{rms})K_{rms}k_p}{4k_u}\right]^{2/3}$$

- 1D gain length $L_{g,1D} = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{1D}}$
- Cooperation length

$$L_{c,1D} = \frac{\lambda_r}{4\pi\sqrt{3}\rho_{1D}}$$

• Single spike operation

$$\sigma_{b,SS} < 2\pi L_{c,1D} = \frac{\lambda_r}{2\sqrt{3}\rho_{1D}}$$

Numerical example: SPARX @ INFN-LNF

- Take 2 GeV operation, "standard SPARC undulator", $\lambda_u = 2.8$ cm
- Peak current *I*=2 kA, $\rho_{1D} = 1.8 \times 10^{-3}$
- Estimate single spike threshold: $\sigma_{h,SS} < 0.48 \ \mu m (1.6 \ fsec)$
- Note: with ultra-small Q, ρ is enhanced
 - Spike is a bit shorter...
 - FEL gain better

Ultra-short pulses at SPARX

- Scaling indicates use of ~1 pC beam for single spike
- For 1 pC, σ_z only 4.7 μ m after velocity bunching
- Use June 2008 version of SPARX lattice
 - compression no longer at end, at 1.2 GeV (Final 2.1 GeV)
- Very high final currents,
 - some CSR emittance growth, for 1 pC $\varepsilon_{nx} \cong 7.5 \times 10^{-8}$ m rad
 - Longitudinal tails, higher peak brightness (2 orders of magnitude!)

 $B = 2 \times 10^{17} \text{ A/m}^2$

FEL performance: 1 pC

- Single spike with some structure
- > 1 GW peak power at saturation (30 m)
- 480 attosecond rms pulse at 2 nm

Higher Q SPARX case: 10 pC

Longitudinal phase space, 10 pC

Current profile; some pedestal visible

- Put back beam power, X-ray photons
- Velocity bunch to 10.3 μm rms
 - Still space dominated charge scaling ~ $Q^{1/3}$
- 1 fs pulse
- Large emittance growth

$$\varepsilon_n = 7.6 \times 10^{-7} \text{ m-rad}$$

- 10 GW peak FEL power
- Saturation at 20 m (v. high brightness)
- Quasi-single spike
 - Lower brightness=longer cooperation length
 - 4x10¹¹ photons, good for many applications

Extension to LCLS case

- 1 pC does not give quasi-single spike operation
 - Beam too long, need to scale with λ/ρ
- Use 0.25 pC (1.5M e⁻), obtain ε_n =0.033 mm-mrad
- Yet higher brightness; saturation expected in 60 m

LCLS Genesis results

Alternative scenario: new undulator for very short λ operation

- Use high brightness beam to push to short wavelength

 LCLS example
- Shorter period undulator
 - Shorter still soon available...

Ku	1
$\lambda_{\rm u}$ (cm)	1.5
β (m)	2-6
U(GeV)	4-14

Progress at SLAC on low-Q, high brightness beams

- 20 pC case measured
 - Diagnostic limitation
- Excellent emittance after injector
 - No velocity bunching
- Chicane compression
 - As low as 2 fs rms, with some ϵ growth

Slice Emittance at LCLS: Low Charge Case

Emittance near calculated thermal emittance limit,

20 pC, 135 MeV, 0.6-mm spot diameter, 400 µm rms bunch length (5 A)

Measurements and Simulations for 20-pC Bunch at 14 GeV

Photo-diode signal on OTR screen after BC2 shows minimum compression at L2-linac phase of -34.5 deg.

Horizontal projected emittance **measured** at 10 GeV, after BC2, using 4 wire-scanners.

LCLS FEL <u>simulation</u> at 1.5 Å based on measured injector beam and *Elegant* tracking, with CSR, at 20 pC.

Ultra-short beam application: coherent, sub-cycle radiation

- Coherent transition radiation
- Non-destructive: coherent edge radiation (CER)

Coherent optical-IR sub-cycle pulse

- CER and CTR cases simulated with QUINDI
 - Coherent IR, sub-cycle pulse (SPARX 1 pC case)
 - Unique source at these wavelengths (~30 MW, peak)
 - Use in tandem w/X-rays in pump-probe
 - Would like to try this at LCLS...

Ultra-short beam application: IR wavelength PWFA

- Ultra-high brightness, fs beams impact HEP also!
- Use 20 pC LCLS beam in high *n* plasma
- In "blowout" regime: total rarefaction of plasma e-s
 - Beam denser than plasma
 - Very nonlinear plasma dynamics
 - Pure ion column focusing for e-s
 - Linac-style EM acceleration
 - General measure of nonlinearity:

$$\tilde{Q} \equiv \frac{N_b k_p^3}{n_0} = 4 \pi k_p r_e N_b \begin{cases} <<1, \text{ linear regime} \\ >1, \text{ nonlinear "blowout"} \end{cases}$$

MAGIC simulation of blowout PWFA case

Optimized excitation

- Beam must be short and narrow compared to plasma skin depth $\sigma_r < k_p^{-1}$ $\sigma_z < k_p^{-1}$
- In this case $\tilde{Q} > 1$ implies $n_b > n_0$, blowout
- With 2 fs LCLS beam we should choose $n_0 = 7 \times 10^{19} \text{ cm}^{-3}$
- For 20 pC beam, we have $\tilde{Q} = 7$
- 1 TV/m fields (!)
- Forming collaboration
 UCLA-SLAC-USC-DESY

OOPIC simulation of LCLS case

What are the experimental issues?

- Length of plasma: ~1 mm
 - 1 GeV energy change, perturbative at beginning
 - Straightforward diagnosis
- Plasma formation
 - 3 atm gas jet
 - Ionization via LCLS X-rays...
 - Beam-induced ionization
- Beam focusing
 - Need sub-µm beam
 - Use strong-field mini-beta insertion

X-ray ionization

- Ionization cross section for 8 keV X-rays in gas is in the kBarn range
- Mean free path of few cm
- With 1E12 photons and 50 μm X-ray beam, ionization fraction <1E-4...

Beam-field induced ionizaton

- Need to focus beam to < 1 μm rms (later...)
- Radial E-field > TV/m
- Ionization studied in hydrogen gas

OOPIC predictions for 3 atm case

~7E19/cc plasma, >TV/m peak wakefield!

Final focusing system

- Need few mm β -function at plasma
- Use ultra-high field permanent magnet quads
 - mitigate chromatic aberration limits
 - FF-DD-F triplet, adjustable through quad motion
- Developed 570 T/m (!) PMQ fields

Where and when

- Option 1: LCLS beam time proposal
 - Downstream of undulator
 - Competitive
 - Disruptive due to mini- β insert
- Option 2: LCLS bypass line
 - Proposal for test beam (HEP)
 - Possible addition of undulator (BES)
 - Under consideration now, could be fast track
- Option 3: FACET after upgrade
 - Need RF photoinjector
 - Optics not yet established
 - Long lead time...

Use Table-top XFEL undulator?

- LMU MPQ (Garching)-centered collaboration (BESSY, LBNL, UCLA, etc.)
- UCLA collaboration on beam transport and advanced undulator (Pr-based)
- Need short λ_u high field undulator for X-rays @1
 GeV important for linac-based sources too...

Examine use of undulator at SPARX Lase at 6.5 Å (smaller by almost 5) Saturation at 500 MW (5E9 γ 's) Gain length shortened by 2

Apply with LCLS energy... 0.1 Å?

Lets organize

- Collaboration
 - Based on E169
- Initial explorations with SLAC stake-holders
 - Accelerator people
 - Director
 - Bucksbaum, Stohr
- First experiments in 2011?