X-band Single Cell and T18_SLAC_2 Test Results at NLCTA

> Faya Wang Chris Adolphsen Jul-9-2009

• Single cell SW structure test result

Breakdown with constant gradient but different pulse heating Breakdown with constant pulse heating but gradient

• 2nd SLAC made T18 test result

1C-SW-A3.75-T2.60-Cu6N-KEK structure parameters			
Parameters	Unit	Value	
Frequency	GHz	11.427 (Nitrogen, 20 °C)	
Cells		1+matching cell + mode launcher	
Q (loaded)		4661	
Coupling		0.97	
Iris Thickness T	mm	2.6	
Iris Dia. a	mm	3.75	
Phase Advance Per Cell	deg	180	
E_s/E_a		2.03	
Maximum surface electric field for 10 MW	MV/m	398.9	
Maximum surface magnetic field for 10 MW	A/m	667978.1	
Peak pulse heating for 1 μs pulse with flat field of 100 MV/m	°C	24	

RF Processing History During First 100 Hours

Detect breakdown from the large (> 0.8 on above scale) current produced

Breakdown Study with Constant Gradient but Different Pulse Heating from the Pre-Fill 'Warm-up'

Breakdown Rate for Fixed Gradient

9

Comparison of these results with those from a similar structure (same a/λ) tested at the Klystron Test Lab where the pulse shape was fixed so the gradient varies with pulse heating

10

Breakdown Study with Constant Pulse Heating

Time (ns)

Breakdown Rate for Fixed Peak Pulse Heating

12

Test Results from Second SLAC T18 Disk Structure

Freq.: GHz	11.424
Cells	18+input+output
Filling Time: ns	36
Length: cm	29
Iris Dia. a/λ(%)	15.5~10.1
Group Velocity: v_g/c (%)	2.61-1.02
S ₁₁ /S ₂₁	0.035/0.8
Phase Advace Per Cell	2π/3
Power Needed < E _a >=100MV/m	55.5MW
Unloaded $E_a(out)/E_a(in)$	1.55
E _s /E _a	2
Pulse Heating Δ T: K (75.4MW@200ns)	16.9-23.8
High Power Test Time: hrs	1400
Total Breakdwon Events	2148

This time, processed structure by progressively lengthening the pulse at constant gradient (110 MV/m)

Comparison of current BDR rate (blue circle) with the rate curves from the First SLAC T18 structure at different processing times

RF Breakdown Locations

Blue dot: T18_SLAC_2 after 250 hrs running Red square: T18_SLAC_1 after 1200 hrs running

Summary

- Reduce fill time with SLED for SW cavity test
- It is possible to separate pulse heating and gradient with SLED for the same structure.
- T18 is a good structure, however it is not clear why there is a hot cell.