Photonic Bandgap Fiber Wakefield Experiment:

Focusing and Instrumentation for Dielectric Laser Accelerators

R. Joel England

E. R. Colby, C. McGuinness, J. Ng, R. Noble, T. Plettner, C. M. S. Sears, R. H. Siemann, J. E. Spencer, D. Walz

Advanced Accelerator Research Department SLAC National Accelerator Laboratory

July 8, 2009

Bob Siemann Symposium and ICFA Workshop 1

E163: A facility for testing laser-driven accelerator structures. Beam energy = 60MeV; $\sigma_t = 1$ ps to 400 attosec; $\sigma_E = 0.1\%$

Dielectric Fiber Accelerator

conductor

hollow dielectric-lined waveguide aperture ~ 0.26 λ ; E_z~ 2.5 GV/m

DF; $\varepsilon / \sqrt{\varepsilon - 1} = 2$

conductor lossy at optical wavelengths

Rosing & Gai, PRD **42**, 1829 (1990)

hollow Bragg waveguide aperture ~ 0.3 λ ; E_z ~ 2.5 GV/m DF; $\sqrt{1 + (2\pi a / \lambda)^2} = 2.1$

Mizrahi & Schachter, PRE 70, 016505 (2004)

PBG fiber with central defect aperture ~ 0.68 λ ; E_z ~ 2.5 GV/m

X. E. Lin, PRSTAB 4, 051301 (2001)

damage threshold for $SiO_2 \sim 5GV/m @ 1ps$

 $E_z = E_{pk} / DF$ $\sigma_t > (1 - v_g / c) L_{fiber}$

July 8, 2009

Optimized PBG Fiber Geometry

lambda (micron) 1.01 1.01 1.01 Cherenkov Z (ohm) 133.2 20.0 8.2 Cherenkov loss factor (V/C) 3.92E+22 5.88E+21 2.40E+21 Characteristic Z (ohm) 19 0.7 0.15	Rdefect (micron)	0.678	1.75	2.74
Cherenkov Z (ohm) 133.2 20.0 8.2 Cherenkov loss factor (V/C) 3.92E+22 5.88E+21 2.40E+21 Characteristic Z (ohm) 19 0.7 0.15	lambda (micron)	1.01	1.01	1.01
Cherenkov loss factor (V/C) 3.92E+22 5.88E+21 2.40E+21 Characteristic Z (ohm) 19 0.7 0.15 Lass factor (V/C) 2.92E+21 4.92E+22 5.88E+21	Cherenkov Z (ohm)	133.2	20.0	8.2
Characteristic Z (ohm) 19 0.7 0.15 Loss forter (1/2) 0.005,001 0.005,001 0.0575,010	Cherenkov loss factor (V/C)	3.92E+22	5.88E+21	2.40E+21
	Characteristic Z (ohm)	19	0.7	0.15
Loss factor (V/C) $3.26E+21$ $1.20E+20$ $2.57E+19$	Loss factor (V/C)	3.26E+21	1.20E+20	2.57E+19
Damage Factor 2.1 8.0 15.6	Damage Factor	2.1	8.0	15.6

X. E. Lin "Photonic bandgap fiber accelerator," PRSTAB 4, 051301 (2001)

July 8, 2009

 $a = 0.35 \lambda$; R = 0.52 a

The Road to a Fiber-based Accelerator

- Manufacture/Prototyping
- Coupling
 - e[±] beam: focusing, emittance, microbunching
 - laser: mode-matching, coupling efficiency, phase stability
- Fiber Characterization
- Proof-of-Principle Acceleration + Staging

Manufacturability

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Courtesy Crystal-Fibre, Inc.

A. Argyros, et al., Optics Express 18, 5642 (2008)

Custom Fiber Manufacture

- prohibitively expensive for accel. prototyping
- SBIR or other funding for collaboration with industry (e.g. Incom, Inc. Charlton, MA)
- Pre-made Telecom Commercial Fibers
- PBG telecom fibers exist (~\$500/m)
- Thorlabs + Crystal-Fibre, Inc.
- Not designed for accelerator applications

Polymethylmethacrylate (PMMA) Fibers

- U. Sydney (A. Argyros, et al)
- drawing process less expensive
- technique could be used for geometrical prototyping and tolerance testing

Bob Siemann Symposium and ICFA Workshop

July 8, 2009

Manufacturability

courtesy Dave Richardson

July 8, 2009

Commercial Fibers

fibers manufactured by Crystal-Fibre, Inc.

λ (telecom)	2R (defect) (µm)	a (pitch) (µm)	lattice dia. (µm)	cladding dia. (µm)
1550	10.9	3.8	70	120
1060	9.7	2.75	50	123
633	5.1	1.77	33.5	101
830	9.2/9.5	2.3	40	135

BANDSOLVE simulation of accelerating mode for HC-1060 fiber maximum gradient ~ 30 MV/m

courtesy B. Noble

July 8, 2009

Laser Coupling

July 8, 2009

Coupler Studies

July 8, 2009

Coupler Studies

PML

1/12 section of fiber HFSS Simulation decompose excitation into normal modes of the waveguide (including Lin mode):

$$\frac{E(x, y, z, t)}{H(x, y, z, t)} = \sum_{n} \left[a_n^+ \left\{ \frac{E_n(x, y)}{H_n(x, y)} \right\} e^{+ik_n z} + a_n^- \left\{ \frac{E_n^*(x, y)}{-H_n^*(x, y)} \right\} e^{-ik_n z} \right];$$

July 8, 2009

Laser Coupling from Free Space

Coupling to fiber tip from free space:

- shorter term solution
- HFSS model of simple dielectric waveguide
- will extend to PBG lattice type fiber

- radially polarized laser on flat fiber tip
- linearly polarized laser on angled fiber tip

E-Beam Focusing

New Halbach Magnet Design Field Gradient ~ 500 T/m Aperture = 6 mm Adjustable z positions of magnets. String encoder readback of magnet positions. On slider stage for insertion/removal of assembly. Magnets aligned on titanium rods.

Permanent Magnet Quadrupoles

PowerTrace Simulation

Microbunch Washout

IFEL Interaction + Chicane Compression

Technique recently demonstrated by C.M.S. Sears -> 400 attosec bunches

$$\delta_{f} = \delta_{0} + \eta \sin(k_{L}z_{0}) \text{ Dominant washout terms}$$

$$z_{f} = z_{0} + R_{56}[\delta_{0} + \eta \sin(k_{L}z_{0})] \oplus T_{511}x_{0}^{2} + T_{533}y_{0}^{2}$$

After PMQ Focus

Primary culprits are the T511 and T533 of the PMQs

July 8, 2009

Microbunch Washout

Possible Remedies

Radially Dependent Amplitude

$$z_{f} = z_{0} + R_{56} \{\delta_{0} + \eta(x_{0}, y_{0}, z_{0}) \sin(k_{L} z_{0})\} + T_{511} x_{0}^{2} + T_{533} y_{0}^{2}$$
$$\eta(x_{0}, y_{0}, z_{0}) = \eta - \frac{T_{511} x_{0}^{2} + T_{533} y_{0}^{2}}{R_{56} \sin(k_{L} z_{0})}$$

this requires the IFEL modulation to increase quadratically with radial distance

Collimation

Emittance Requirements

ELEGANT simulation of focal waist

Transmission vs. Normalized Emittance

July 8, 2009

Emittance Preservation

Measured Emittance Growth in the NLCTA/E163 Beamline

18

Improved Modeling Tools Matlab-based

July 8, 2009

Improved Modeling Tools ELEGANT-based

20

Improved Modeling Tools

DIMAD-based: Built into the Control System

July 8, 2009

Alternate definitions of βx and βy

Experimental Plan

Phase 1: Experiment Layout

Required Beam Parameters

Beam Charge	50 pC
Normalized Emittance	< 5 mm mrad
Energy	60 MeV
Bunch length	1 ps
Energy Spread	0.1 %

Summary

Issues to be addressed in developing PBG Fibers as Accelerators:

- Affordable (<\$10k) manufacturing of Prototypes
- For injected test beam:
 - emittance
 - focusing and spot size
 - microbunch washout
- Laser coupling:
 - optimizing air-to-fiber coupling
 - developing high-efficiency advanced coupler designs
- Doing proof-of-principle experiments with single and then multiple stages of acceleration.

Backup Slides

Coupler Studies

Advanced coupler design:

- in/out power couplers
- analogy to RF tw accelerator
- $S_{11} = 0.1$: power coupling can be close to 100%
- how to manufacture?

Motivation

July 8, 2009

3D "woodpile"

structure

Photon Budget & SN Ratio

$$\Delta E_{\text{mode}} = kq^{2} = \frac{e^{2}c}{4} \frac{\beta_{g}}{1 - \beta_{g}} \frac{Z_{c}L}{\lambda_{0}^{2}} \qquad \frac{\Delta E_{\text{mode}}}{\Delta E_{\text{Cherenkov}}} > 1 \implies Z_{C}[\Omega] > \frac{120}{\lambda[nm]}$$

$$\text{HC-1060 fiber:} \quad Z_{C} = 0.005\Omega \; ; \; \frac{120}{\lambda[nm]} = 0.12\Omega$$

$$k = 1.42 \times 10^{18} J/C^{2}m \rightarrow \Delta E_{\text{mode}} = 3.6 \times 10^{-23} J/\text{electron}$$

$$N_{\gamma} = \Delta E_{\text{mode}} \cdot (\frac{50 pC}{e}) \frac{1}{h\omega} = 6162 \text{ photons}$$

$$N_{\text{detector}} = N_{\gamma} \eta_{\text{transmission}} \eta_{\text{fiber}} \eta_{\text{spectrgraph}} = 1150 \text{ photons}$$

$$50\% \quad 98\% \quad 38\%$$

be reduced

Search for Candidate Accel. Modes

HC-1060 SEM image

RSoft BandSolve Model

toward SOL line

July 8, 2009

Schottky vs Cherenkov

$$\Delta E_{\text{mode}} = kq^{2} = \frac{e^{2}c}{4} \frac{\beta_{g}}{1 - \beta_{g}} \frac{Z_{c}L}{\lambda_{0}^{2}} \qquad \Delta E_{\text{Cherenkov}} = \int_{\lambda_{0} - \Delta\lambda}^{\lambda_{0} + \Delta\lambda} \frac{4\pi^{2}r_{e}Lmc^{2}}{f\lambda^{3}} (1 - \frac{1}{\varepsilon})d\lambda$$
$$\frac{\Delta E_{\text{mode}}}{\Delta E_{\text{Cherenkov}}} = \left[\frac{\varepsilon}{\varepsilon - 1} \frac{f\varepsilon_{0}c\beta_{g}/(1 - \beta_{g})}{4\pi(1 + fL_{cladding}/L_{fiber})}\right] \frac{\lambda_{0}}{\Delta\lambda} Z_{c}$$

$$v_{g} = 0.6;$$

$$\Delta \lambda = 0.48 \text{ nm};$$

$$L_{\text{fiber}} = 1 \text{ mm};$$

$$L_{\text{cladding}} = 164 \text{ }\mu\text{m};$$

$$\varepsilon = 2.13 \text{ }; f = 10;$$

$$HC-1550 \text{ fiber}: \quad Z_{\text{C}} = 0.2\Omega \text{ }; \quad \frac{212}{\lambda[nm]} = 0.13$$

$$Lin \text{ Fiber}: \quad Z_{\text{C}} = 19\Omega \text{ }; \quad \frac{212}{\lambda[nm]} = 0.2$$

July 8, 2009

Experimental Layout

NLCTA: design parameters

Beam Charge	50 pC
Normalized Emittance	1-2 mm mrad
Energy	60 MeV
Bunch length	1 ps
Energy Spread	0.1 %

July 8, 2009

Experimental Layout

image of mounted fiber

Challenge: Small Spot Sizes

PMQ triplet with motorized gap spacing and focal position.420, 560, 560 T/m field strengths modified Halbach design

C.M. Sears, "Production, characterization, and acceleration of optical microbunches," PhD dissertation, Stanford U. (2008)

July 8, 2009

Challenge: Small Spot Sizes

PowerTrace Simulation

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

ELEGANT simulation of the final focus transmission ~ 50% (for 1060 fiber with 10 µm defect)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. βx,βy ~ 0.5 mm σx,σy ~ 3 μm

July 8, 2009

Challenge: Small Spot Sizes

Summary

optical to IR accelerating structures:

- offer high gradients (~ 1GeV/m),
- high rep rates, high damage threshold of dielectrics
- require micron-scale focusing, microbunching, and manufacturing PBG fiber accelerators:
- permit large apertures
- commercial manufacturing capability;
- premade fibers are designed for telecom, not acceleration
- need to develop custom geometries: Lin fiber
 E163
- near-term: focusing of e-beam through fiber cores + spectrally resolving fiber modes from the emitted wakefield radiation
- long-term: coupling of structure to drive laser and observing net acceleration of microbunched e-beam ---> multiple stages

Experimental Plan

Phase I: Wakefield Excitation (no laser)

- tightly focus beam through fiber central defect (spot sizes $< 10 \,\mu$ m)
- wakefield excitation of fiber modes
- resolve accelerator-like modes by spectral analysis

July 8, 2009

- few-100 attosec microbunched beam using IFEL + chicane
- laser coupled to the fiber accelerator mode
- measure net microbunch acceleration with magnetic spectrometer