ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders. SLAC, July 7-10 2009

DIELECTRIC BASED HG STRUCTURES: POWER EXTRACTION, TUNABILITY AND ENERGY TRANSFER EFFICIENCY

A. Kanareykin

Euclid Techlabs LLC in collaboration with AWA, ANL

Euclid Techlabs LLC

ANL/Euclid Techlabs Collaboration on Dielectric Wakefield Acceleration

Euclid Techlabs: C.Jing, P.Schoessow, S.Antipov, F.Gao and A.Kanareykin

Argonne National Lab: M.Conde, J.G.Power, R.Conecny, Z.Yusof and W.Gai.

Euclid Techlabs LLC

MW DLA issues: high gradient – drive beam, power extraction, tuning, efficiency, BBU, multipacting, ...

- □ High Gradient DLA
- 26 GHz Wakefield Power Extractor
- □ Tunable Dielectric Based Accelerator : Idea and Experiment
- □ Ferroelectric Based Fast High Power Switching
- □ Transformer Ratio X-Band Experiment, R>2 Demonstration
- Energy Modulation

Euclid Techlabs LLC

Dielectric Based Accelerator

Euclid Techlabs LLC

Euclid Techlabs LLC

26GHz Dielectric-Based Power Extractor*

- A 26GHz power detector has been built and bench tested.
- A load has been built and bench tested.
- Beam test has been performed at AWA facility.

Geometric and accelerating parameters	value
ID / OD of dielectric tube	7 mm /9.068 mm
Dielectric constant	6.64
Length of dielectric tubes	300 mm
R/Q	9788 Ω/m
Drain time Td	3 ns
Steady power from AWA bunch train	148 MW

Performed 3 experiments to date:

- Single beam--- to check the frequency
- 16-Bunch train--- to check the rf pulse formation
- 4-bunch train--- to achieve the high rf power

Euclid Techlabs LLC

Down-converted rf Trace of the 26GHz Power Extractor (16 bunches with 769ps separation)

Summary for 26GHz Dielectric Based Power Extractor

- Successfully demonstrated the high frequency, high power rf source using dielectric-based scheme.
- Experiment will be continued in the upgraded AWA facility next year.
- Design of a fully featured power extractor(with transverse modes damping) is needed to prevent BBU in the high charge transportation.

Euclid Techlabs LLC

SLAC, July 7-10 2009

Euclid Techlabs LLC

Tunable DLA Iclid Fast DC Voltage Tuning 7 6 \bigcirc 0 Freq. Shift(MHz) 5 0 0 4 3 0 0 20 \bigcirc 0 1 -100 10500 -15 — OV 500V -750V $\underbrace{\widehat{\operatorname{gp}}}_{\text{IIS}}^{-20}$ - 1000V -1250V-1500V-1750V-2000V-30 high voltage 2250V 2500V 6 MHz at 20 kV/cm -35 17.917.9518 18.05 18.1

Euclid Techlabs LLC

ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders. SLAC, July 7-10 2009

Freq(GHz)

Euclid Techlabs LLC

BST(M) Ferroelectric Based L-band High Power Tuner Collaboration with Omega-P and FNAL

Euclid Techlabs LLC

R < 2 under very general conditions: linear media; a relativistic, longitudinally symmetric drive bunch; and identical paths through the system of both drive and witness beams.

Euclid Techlabs LLC

Reference: Bane et. al., IEEE Trans. Nucl. Sci. NS-32, 3524 (1985)

Reference: Schutt et. al., Nor Ambred, Armenia, (1989)

Some of the methods that can be employed *to obtain R>2* include: a triangular drive bunch longitudinal profile; a train of Gaussian drive bunches of progressively increasing charge (ramped bunch train, RBT); the ring type driver, use of a proton drive beam so that the particles within the bunch can change positions during deceleration; and nonlinear plasma dynamics.

A single drive bunch was replaced by two bunches with charge ratio of 1:2:5 and a separation of 10.5 wavelengths of the fundamental mode

Euclid Techlabs LLC

Leading and Tailing 8 nC and 20 nC bunches

the transformer ratio increases correspondingly, from $R \sim 1.8$ to $R \sim 3$.

satisfying the requirement of an equal decelerating field inside each bunch

C.Jing, A.Kanareykin, J.G.Power et al. PRL 98, 144801, 2007

An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained, R>2 has been demonstrated.

Fuclid	lechlabs	(<u>C</u>
Laona		

laser pulse stacking method to stretch the AWA laser pulse from FWHM = 8 ps to 26.5 ps.

Energy Modulated Bunch Train

Radius of channel (Rc,cm)	0,15	Radius of channel (Rc,cm)	0,15
Radius of dielectric (Rd,cm)	0,247	Radius of dielectric (Rd,cm)	0,247
Radius of ferroelectric (Rw,cm)	0,262	Radius of ferroelectric (Rw,cm)	0,262
Permittivity of dielectric	5,7	Permittivity of dielectric	5,7
Permittivity of ferroelectric	5,7	Permittivity of ferroelectric	5,7
Number of bunches	4	Number of bunches	4
Number of modes	5	Number of modes	5
Bunch length (sigmaz, cm)	0,15	Bunch length (sigmaz, cm)	0,15
Distance between 1 and 2 (cm)	23,55	Distance between 1 and 2 (cm)	23,04
Distance between 1 and 3 (cm)	47,09	Distance between 1 and 3 (cm)	46,09
Distance between 1 and 4 (cm)	70,63	Distance between 1 and 4 (cm)	69,14
Charge of 1 bunch (nC)	20	Charge of 1 bunch (nC)	20
Charge of 2 bunch (nC)	60	Charge of 2 bunch (nC)	20
Charge of 3 bunch (nC)	100	Charge of 3 bunch (nC)	20
Charge of 4 bunch (nC)	140	Charge of 4 bunch (nC)	20
Base frequency	31,21 GHz	Base frequency	31,21 GHz
Transformer ratio	7,293	Transformer ratio	1,159
Maximal wakefield	153,7 MV/m	Maximal wakefield	152,3 MV/r

lid

A.Kanareykin et al, in preparation

For the same gradient: Ramped – 220 nC; Flat – 80 nC

100

Euclid Techlabs LLC

60

z, cm

70

50

-100 -120 -140

10

20

30

Charge distribution is 20-20-20 nC, 1.5 mm length AWA bunch generated at the diamond based DLA structure with the inner radios of 1.5 mm, outer radius of 2.62 mm, ID=3 mm, OD=5.24. Spacing between the bunches corresponds to 1.3 GHz or ~ 23 cm. Maximal accelerating gradient behind the train is 150 MV/m.

A.Kanareykin et al, in preparation Euclid Techlabs LLC

Energy Modulation: pros and cons

Ramped Bunch Train

Pros:

- laser beam manipulation for the train profile generation

Cons:

- lower accelerating gradient
- high charge for the last bunches
- transverse fields increase
- focusing for ramped bunch charges

A.Kanareykin et al, in preparation

Energy Modulated Bunch Train

Pros:

- higher accelerating gradient
- flat and low charge bunch train
- last bunches have higher energy
- transverse stability

Cons:

- energy modulated driver bunch train generation

- focusing of the energy profiled bunch train

Euclid Techlabs LLC

SUMMARY

- 1. Successfully demonstrated the 26GHz, high power rf source using dielectric-based scheme.
- 2. Design of a fully featured power extractor (with transverse modes damping) is needed to prevent BBU in the high charge transportation.
- 3. Tunable dielectric based accelerator concepts is presented
- 4. Transformer ratio experiment demonstrated R>2 for DWA
- 5. Energy modulated beam is considered, pros and cons are discussed.

Euclid Techlabs LLC