## Transverse to Longitudinal Emittance Exchange Results

Ray Fliller III<br>NSLS-II Projec $\dagger$<br>Brookhaven National Laboratory (formerly of Fermilab) and<br>Tim Koeth<br>Rutgers University and Fermilab<br>(now at University of Maryland)<br>For the Fermilab AO Team<br>ICFA Mini Workshop

## Acknowledgements

## Fermilab

- Helen Edwards
- Ray Fliller (now at BNL)
- Tim Koeth (now at University of Maryland)
- Jinhao Ruan
- Amber Johnson
- Yin-e Sun
- Artur Paytyan
- Mike Davidsaver (now at BNL)
- Grigory Kazakevich (now at Omega-P Inc.)
- Manfred Wendt
- Randy Thurman-Keup
- Vic Scarpine
- Alex Lumpkin

Northern Illinois University -Philippe Piot

## Transverse to Longitudinal Emittance Exchange - How?

- There have been two proposals for EEX in a linac

1. Use a deflecting cavity in the middle of a chicane (Cornacchia and Emma, 2002)
2. Use a deflecting cavity in the middle of two doglegs (Kim and Sessler, 2006)
3. Emma, et.al. in 2006 combined this scheme with a round to flat beam transformer as well.

- Both FNAL and ANL use the Kim and Sessler scheme.
- Incoming beam is manipulated to have the appropriate transverse and longitudinal phase ellipses
- First dogleg provides dispersion at DMC.
- The deflecting cavity gives a longitudinal position dependant transverse kick and a transverse position dependant momentum kick.
- The second dogleg couples the remaining correlations to finish the exchange.



## How does the exchange work??

- The transverse - longitudinal transport matrix $R$, and beam matrix $\sigma$ look like (in $2 \times 2$ block mode)

$$
R=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad \sigma_{1}=\left(\begin{array}{cc}
\sigma_{x} & 0 \\
0 & \sigma_{z}
\end{array}\right)
$$

- The beam matrix after the transport is given by

$$
\sigma_{2}=R \sigma_{1} R^{T}
$$

- If the $R$ matrix can be made to look like

$$
R=\left(\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right)
$$

- Then the beam matrix looks like


New Horizontal Emittance is the old longitudinal emittance

New Longitudinal Emittance is the old Horizontal emittance

## How does the exchange work??

- Assume that the beamline consists of a before cavity section, a DMC, and an after cavity section.

$$
R=M^{a c} M^{c a v} M^{b c}
$$

- Assume that the before cavity section produces some dispersion, $\eta$, with a slope $\eta^{\prime}$.
- Assume that the cavity is a zero length element
> What does the cavity strength need to be?

$$
k=\frac{e V_{0} \omega}{E c}=-1 / \eta
$$

$>$ What are the needed properties for the after cavity section?

$$
\binom{M_{16}^{a c}}{M_{26}^{a c}}=\left(\begin{array}{ll}
M_{11}^{a c} & M_{12}^{a c} \\
M_{21}^{a c} & M_{22}^{a c}
\end{array}\right)\binom{\eta}{\eta^{\prime}}
$$

- These equations come out of nothing more than the symplectic condition and the condition that the $A$ and $D$ blocks of the $R$ matrix are all zeros.
- Note: The vertical emittance is unaffected by the transformation.


## Fly's in the Ointment

- There are many effects that may leave residual coupling, dilute, or obscure the emittance exchange.
$>$ Linear Flies - can lead to residual coupling of the emittances, leading to an emittance increase
- I've assumed an infinitely thin cavity, a finite length cavity will leave residual coupling
- Building an imperfect beamline such as using a chicane vs. a double dogleg as Cornacchia and Emma pointed out.
- Incorrect cavity strength - too strong is as bad as too weak.

These can be minimized or eliminated by manipulating the incoming beam phase spaces
> Ugly Flies - these can blow up the emittances, possibly washing out the effect of the exchange

- Space charge
- Coherent Synchrotron Radiation

These can be minimized by lowering the beam charge.

## Watching the Exchange - The Fermilab experiment

Horizontal Phase Space
Input to the EEX line Before Dipole 2 Before DMC After DMC Before Dipole 4 Exchange Complete


Longitudinal Phase Space


## AO Photoinjector



- L band 1.5 cell NC RF gun with $\mathrm{Cs}_{2}$ Te photocathode $>35 \mathrm{MV} / \mathrm{m}$ maximum cathode gradient
- TESLA technology accelerating cavity
> $12 \mathrm{MV} / \mathrm{m}$ accelerating gradient
- Round to Flat beam transformer
- Transverse to Longitudinal Emittance Exchange Beamline
- Quadrupole transport channel
- User experimental area


## Beam Parameters

- 16 MeV total energy
- $\Delta \mathrm{p} / \mathrm{p} \approx 0.1 \% @ 16 \mathrm{MeV}(250 \mathrm{pC})$
- Bunch length $\approx 0.75 \mathrm{~mm}(250 \mathrm{pC})$
- $\gamma \varepsilon_{z} \approx 20 \mathrm{~mm}$-mrad (RMS @ 250 pC )
- $\gamma \varepsilon_{x}, \gamma \varepsilon_{y} \approx 5 \mathrm{~mm}-\mathrm{mrad}(\mathrm{RMS} @ 250 \mathrm{pC})$



## Early EEX Signature from Spectrometer


~ 550 keV


## Measuring the $R_{14}$ and $R_{34}$ through the EEX line

Evolution of the beam trajectory as the cavity strength is increased, and energy is changed

$\delta P= \pm 1.05 \% \quad$ in $0.35 \%$ increments

## Measured EEX Transport Matrix FR5PFP020



Circles are measurements, green lines are a weighted linear fit
Red lines are calculated expected values
Measured full $6 \times 6$; the vertical plane is unaffected by the cavity status...

## Emittance Exchange Data Sets from AO - PRELIMINARY!!!

Note: These numbers subject to change

| Plane | $\boldsymbol{\varepsilon}[\mathbf{m m}$-mrad] input | $\boldsymbol{\varepsilon [ m m - m r a d ]}$ <br> output |
| :---: | :---: | :---: |
| Horizontal | 4.7 | 20 |
| Vertical | 5.1 | 6.0 |
| Longitudinal | 21 | 7.0 |

Successful exchange of horizontal and longitudinal emittances!!!

## Future of AOPI EEX Program

- Re-measure $R_{23}$ and $R_{43}$ element
- Understand the emittance measurements
- Space Charge Studies
- transverse-modulation $\rightarrow$ temporal Modulation



## Conclusion

-The AO Photoinjector has constructed a transverse to longitudinal emittance exchange beamline to swap a small transverse emittance with a large longitudinal emittance.
-AO Photoinjector has successfully shown an emittance exchange!

- Other ideas of how to use these manipulations are also around.
- Couple with a round to flat beam transformer
- Making a microbunch train


Office of

## TM ${ }_{110}$ Deflecting Mode Cavity (DMC)



Derived from Figure 1 of C\&E. Electric field at synchronous phase.
Magnetic field a quarter period later.

- No longitudinal electric field on axis.
- Electric field imparts an energy kick proportional to distance off axis.
- Electro-magnetic field provides deflection as a function of arrival time.
- This type of cavity can be used as a crab cavity or for bunch length measurement.

$$
M_{\text {Thin-Cav }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & k & 0 \\
0 & 0 & 1 & 0 \\
k & 0 & 0 & 1
\end{array}\right)
$$

$k=\frac{e V_{0} \omega}{E c} \begin{gathered}\text { kis the integrated transverse kick } \\ \text { normalized to the beam energy } \\ E .\end{gathered}$

## Making an Emittance Exchange - Part I

- The $4 \times 4$ emittance matrix at two points in an accelerator are related by:

$$
\sigma_{1}=\left(\begin{array}{cccc}
\sigma_{x}^{2} & \sigma_{x x^{\prime}} & 0 & 0 \\
\sigma_{x x^{\prime}} & \sigma_{x^{\prime}}^{2} & 0 & 0 \\
0 & 0 & \sigma_{z}^{2} & \sigma_{z \delta} \\
0 & 0 & \sigma_{z \delta} & \sigma_{\delta}^{2}
\end{array}\right)
$$

$$
\sigma_{2}=R \sigma_{1} R^{T}
$$

- $R$ is the $4 \times 4$ transport matrix between these points

$$
R=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

- B and C typically have zero determinant and couple transverse and longitudinal emittances through dispersion.
- The emittances after the transport line are given by:
$\varepsilon_{x 2}{ }^{2}=|A|^{2} \varepsilon_{x 1}{ }^{2}+|B|^{2} \varepsilon_{z 1}{ }^{2}+\lambda^{2} \varepsilon_{x 1} \varepsilon_{z 1}$
$\varepsilon_{z 2}{ }^{2}=|C|^{2} \varepsilon_{x 1}{ }^{2}+|D|^{2} \varepsilon_{z 1}{ }^{2}+\lambda^{2} \varepsilon_{x 1} \varepsilon_{z 1}$
$\lambda^{2} \varepsilon_{x 1} \varepsilon_{z 1}=\operatorname{tr}\left[\left(A \sigma_{x 1} A^{T}\right)^{a} B \sigma_{z 1} B^{T}\right]=\operatorname{tr}\left[\left(C \sigma_{x 1} C^{T}\right)^{a} D \sigma_{z 1} D^{T}\right]$


## Making an Emittance Exchange - Part II

- These equations show that for perfect exchange we need:

$$
\begin{aligned}
& |A|=|D|=0 \\
& |B|=|C|=1 \longleftrightarrow \begin{array}{l}
\text { Follows from the } \\
\text { symplectic condition }
\end{array} \\
& \lambda^{2}=0
\end{aligned}
$$

- How to get $\lambda^{2}=0$ ?

$$
A_{i j}=D_{i j}=0
$$

- If $\lambda^{2} \neq 0$ the emittances are coupled.
$>$ Proper adjustment of the $\sigma$ matrix can reduce or remove the coupling.

