Transverse to Longitudinal Emittance Exchange Results

Ray Fliller III NSLS-II Project Brookhaven National Laboratory (formerly of Fermilab) and Tim Koeth Rutgers University and Fermilab (now at University of Maryland) For the Fermilab AO Team ICFA Mini Workshop

Acknowledgements

Fermilab

- Helen Edwards
- Ray Fliller (now at BNL)
- Tim Koeth (now at University of Maryland)
- Jinhao Ruan
- Amber Johnson
- Yin-e Sun
- Artur Paytyan
- Mike Davidsaver (now at BNL)
- Grigory Kazakevich (now at Omega-P Inc.)
- Manfred Wendt
- Randy Thurman-Keup
- Vic Scarpine
- Alex Lumpkin

Transverse to Longitudinal Emittance Exchange - How?

- There have been two proposals for EEX in a linac
 - 1. Use a deflecting cavity in the middle of a chicane (Cornacchia and Emma, 2002)
 - 2. Use a deflecting cavity in the middle of two doglegs (Kim and Sessler, 2006)
 - 1. Emma, et.al. in 2006 combined this scheme with a round to flat beam transformer as well.
- Both FNAL and ANL use the Kim and Sessler scheme.
- Incoming beam is manipulated to have the appropriate transverse and longitudinal phase ellipses
- First dogleg provides dispersion at DMC.
- The deflecting cavity gives a longitudinal position dependant transverse kick and a transverse position dependant momentum kick.
- The second dogleg couples the remaining correlations to finish the exchange.

How does the exchange work??

The transverse - longitudinal transport matrix R, and beam matrix σ look like (in 2x2 block mode) $R = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad \sigma_1 = \begin{pmatrix} \sigma_x & 0 \\ 0 & \sigma_z \end{pmatrix}$ The beam matrix after the transport is given by $\sigma_2 = R \sigma_1 R^T$ If the R matrix can be made to look like $R = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$ Then the beam matrix looks like New Horizontal Emittance is the old longitudinal emittance New Longitudinal Emittance is the old Horizontal emittance Office of

BROOKHAVEN SCIENCE ASSOCIATES

How does the exchange work??

 Assume that the beamline consists of a before cavity section, a DMC, and an after cavity section.

$$R = M^{ac} M^{cav} M^{bc}$$

- Assume that the before cavity section produces some dispersion, η , with a slope $\eta'.$
- Assume that the cavity is a zero length element
 - > What does the cavity strength need to be?

$$k = \frac{eV_0\omega}{Ec} = -\frac{1}{\eta}$$

> What are the needed properties for the after cavity section?

$$\begin{pmatrix} M_{16}^{ac} \\ M_{26}^{ac} \end{pmatrix} = \begin{pmatrix} M_{11}^{ac} & M_{12}^{ac} \\ M_{21}^{ac} & M_{22}^{ac} \end{pmatrix} \begin{pmatrix} \eta \\ \eta' \end{pmatrix}$$

- These equations come out of nothing more than the symplectic condition and the condition that the A and D blocks of the R matrix are all zeros.
- Note: The vertical emittance is unaffected by the transformation.

Fly's in the Ointment

- There are many effects that may leave residual coupling, dilute, or obscure the emittance exchange.
 - Linear Flies can lead to residual coupling of the emittances, leading to an emittance increase
 - I've assumed an infinitely thin cavity, a finite length cavity will leave residual coupling
 - Building an imperfect beamline such as using a chicane vs. a double dogleg as Cornacchia and Emma pointed out.
 - Incorrect cavity strength too strong is as bad as too weak.
- These can be minimized or eliminated by manipulating the incoming beam phase spaces
 - Ugly Flies these can blow up the emittances, possibly washing out the effect of the exchange
 - Space charge
 - Coherent Synchrotron Radiation

These can be minimized by lowering the beam charge.

Watching the Exchange - The Fermilab experiment

Horizontal Phase Space

Longitudinal Phase Space

U.S. DEPARTMENT OF ENERGY

AO Photoinjector

- L band 1.5 cell NC RF gun with Cs₂Te photocathode
 > 35 MV/m maximum cathode gradient
- TESLA technology accelerating cavity
 > 12 MV/m accelerating gradient
- Round to Flat beam transformer
- Transverse to Longitudinal Emittance Exchange Beamline
- Quadrupole transport channel
- User experimental area

Beam Parameters

- 16 MeV total energy
- ∆p/p ≈ 0.1%@ 16MeV (250 pC)
- Bunch length ≈ 0.75 mm (250 pC)
- $\gamma \varepsilon_z \approx 20 \text{ mm-mrad} (\text{RMS} @ 250 \text{ pC})$
- $\gamma \varepsilon_x, \gamma \varepsilon_y \approx 5 \text{ mm-mrad} (\text{RMS} @ 250 \text{ pC})$

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Early EEX Signature from Spectrometer

Measuring the R_{14} and R_{34} through the EEX line

Measured EEX Transport Matrix FR5PFP020

Circles are measurements, green lines are a weighted linear fit Red lines are calculated expected values

Measured full 6×6 ; the vertical plane is unaffected by the cavity status...

Note: These numbers subject to change

Plane	ε [mm-mrad] input	ε[mm-mrad] output
Horizontal	4.7	20
Vertical	5.1	6.0
Longitudinal	21	7.0

Successful exchange of horizontal and longitudinal emittances!!!

- Re-measure R_{23} and R_{43} element
- Understand the emittance measurements
- Space Charge Studies
- transverse-modulation \rightarrow temporal Modulation

Conclusion

•The AO Photoinjector has constructed a transverse to longitudinal emittance exchange beamline to swap a small transverse emittance with a large longitudinal emittance.

•AO Photoinjector has successfully shown an emittance exchange!

Other ideas of how to use these manipulations are also around.
Couple with a round to flat beam transformer
Making a microbunch train

TM₁₁₀ Deflecting Mode Cavity (DMC)

This type of cavity can be used as a crab cavity or for bunch length measurement.

$$\omega$$
 k is the integrated transverse kick
normalized to the beam energy
E.

axis.

axis.

time.

Making an Emittance Exchange - Part I

- The 4x4 emittance matrix at two points in an accelerator are related by: $\sigma_{1} = \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xx'} & 0 & 0 \\ \sigma_{xx'} & \sigma_{x'}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{z}^{2} & \sigma_{z\delta} \\ 0 & 0 & \sigma_{z\delta} & \sigma_{\delta}^{2} \end{pmatrix} \qquad \sigma_{2} = R\sigma_{1}R^{T}$
- R is the 4x4 transport matrix between these points

$$R = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

- B and C typically have zero determinant and couple transverse and longitudinal emittances through dispersion.
- The emittances after the transport line are given by:

$$\varepsilon_{x2}^{2} = |A|^{2} \varepsilon_{x1}^{2} + |B|^{2} \varepsilon_{z1}^{2} + \lambda^{2} \varepsilon_{x1} \varepsilon_{z1}$$

$$\varepsilon_{z2}^{2} = |C|^{2} \varepsilon_{x1}^{2} + |D|^{2} \varepsilon_{z1}^{2} + \lambda^{2} \varepsilon_{x1} \varepsilon_{z1}$$

$$\lambda^{2} \varepsilon_{x1} \varepsilon_{z1} = tr \left[(A \sigma_{x1} A^{T})^{a} B \sigma_{z1} B^{T} \right] = tr \left[(C \sigma_{x1} C^{T})^{a} D \sigma_{z1} D^{T} \right]$$
Office of
EVIDENTIAL LABORATOR
BROCKHAVEN
NATIONAL LABORATOR
BROCKHAVEN SCIENCE ASSOCIATES

Making an Emittance Exchange - Part II

These equations show that for perfect exchange we need:

$$|A| = |D| = 0$$

Follows from the symplectic condition
$$\lambda^{2} = 0$$

• How to get
$$\lambda^2=0$$
?

$$A_{ij}=D_{ij}=0$$

- If $\lambda^2 \neq 0$ the emittances are coupled.
 - \blacktriangleright Proper adjustment of the σ matrix can reduce or remove the coupling.

