Electron emission from sharp tungsten tips triggered by femtosecond laser pulses

Peter Hommelhoff

Max Planck Institute of Quantum Optics Garching, Germany

Femtosecond frequency comb:Control of optical electric field

• High peak electric field

Field emission tip: brightest electron source

R. H. Siemann Memorial Symposium and ICFA Mini-Workshop on Novel Concepts for Linear Accelerators and Colliders, SLAC, July 7-10, 2009

Ultrafast electron sources

M. Merano, S. Sonderegger et al., Nature 438, 479 (2005)

$$B_r = \frac{\mathrm{d}I}{\mathrm{d}\Omega} \frac{1}{U} \frac{1}{\pi r_v^2}$$

P. Hommelhoff, MPQ

Field emission SEM (high resolution SEM)

Reduced brightness with standard FE tip: > $10^8 \text{ A/(m^2 sr V)}$

(Spence et al. 1994; Swanson, Schwindt 1997; De Jong, Bonard 2004; Kruit et al. 2006...)

P. Hommelhoff, MPQ

Ultrafast Quantum Optics

Time-dependence in intermediate Keldysh regime

Suppl. Fig. 8: Strong-field ionization in the Yudin-Ivanov theory (From Uiberacker at al.)

Yudin-Ivanov theory for tunnel ionization of atoms:

- No cycle averaging
- $\gamma \approx 1$: "non-adiabatic tunneling" (between extreme cases of multi-photon emission and quasi-static tunnel emission)

Theory:

• G. L. Yudin, M. Yu. Ivanov, Nonadiabatic tunnel ionization: Looking inside a laser cycle, PRA 2001

Experiments with atoms in gas phase:

- Uiberacker et al., Attosecond real-time observation of electron tunneling in atoms, Nature 2007
- Colosimo et al., Scaling strong field interactions towards the classical limit, Nat. Phys. 2008
- Eckle et al., Attosecond ionization and tunneling delay time measurements in Helium, Science 2008

Frequency comb: control of optical electric field

Ultrafast Quantum Optics

Experimental setup

1

0.8

0.6

0.4

0.2

- Ti:Sa oscillator: ~780nm, 500mW, 6fs, 150MHz
- Spot radius on tip ~ 3 μ m (1/e²)
- \longrightarrow Peak elec. field up to 5GV/m w/o field enh.

r=50 nm W tip, 780 nm light

Stub emitter instead of tip

Autocorrelator with tip as (non-linear) detector

Tunable non-linearity

Data and model-independent simulation

Model:

- Electron emission from surface state*
 - → ground state wavefunction with kinetic energy = Fermi energy.
- Laser modulates barrier
- Integrate time-dep. Schrödinger eq.

* T. Ohwaki, H. Ishida, A. Liebsch, PRB 68, 155422 (2003)

Simulation result with no adjustable parameters.

Simulation: time-dependent flux

Ultrafast Quantum Optics

P. Hommelhoff, MPQ

Atomic size emission area

Kinematic pulse broadening during acceleration

Accelerate electron from 0 to 60 keV

Co-workers and collaborators

Markus Schenk Michael Krüger Johannes Hoffrogge Hanno Kaupp MPQ

Tomas Plettner Robert Byer Chris Sears (now MPQ) Stanford University / SLAC Catherine Kealhofer Seth Foreman Mark Kasevich Anoush Aghajani-Talesh Yvan Sortais Stanford Physics and Applied Physics

Carbon nanotubes:

Sebastian Stapfner Eva Weig Khaled Karrai Jörg Kotthaus LMU CeNS

Conclusion

Prompt electron emission from atomic scale source demonstrated. 100 MHz... 1GHz. Few electrons per pulse so far from sharp tip.

- ✓ Sub-1 fs electron source; emission area diameter down to 2nm
- ✓ Laser electric field driven emission process
- o Direct proof of previous point
- o Go to larger pulse charge: limits?

Related work:

- PSI: ZrC tip
- PSI: Mo nanoarrays
- Philipps: FE from CNTs
- MBI: Au tips
- U Nebraska: W tips
- Brightness measurement of laser driven emission
- Variation of tip size: increase radius of curvature, increase (space charge limited?) current
- ✤ Join tip and dielectric structure: deflection, acceleration

Open questions / future R&D

- Longer wavelengths: 1.1, 1.5, 2um instead of 800nm helpful as
 - Keldysh parameter proportional to laser frequency
 - structure size / aperture size of dielectric accelerator relaxed
 - High power, high efficiency mode-locked (fiber) laser sources available
- Explore tips:
 - larger tips: space charge issue relaxed, still high brightness, high stability
 - other tip materials: exploit field enhancement
 - explore Schottky effect for high brightness beams w/ photo-emission
- Measure brightness of *laser triggered* electrons
- Explore photo-electric effect with tunable Schottky barrier: High brightness , high quantum efficiency source?
- Arrays?

Tsujino et al., PSI group

Ultrafast Quantum Optics

