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Femtosecond frequency comb:
• Control of optical electric field
• High peak electric field 

Field emission tip:
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Ultrafast electron sources

Field emission SEM
(high resolution SEM)

Reduced brightness with standard 
FE tip: > 108 A/(m2 sr V)

(Spence et al. 1994; Swanson, Schwindt 1997; 
De Jong, Bonard 2004; Kruit et al. 2006…)

Reduced brightness:
~103 A/(m2 sr V)

M. Merano, S. Sonderegger et 
al., Nature 438, 479 (2005)

Qian et al., J. Appl. Phys. 1993
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Light induced electron emission processes

Multiphoton
emission Photoelectric

effect

Photo-assisted
field emission

Optical field
emission

Thermally assisted
emission: laser
heating of the tip

Keldysh parameter
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Time-dependence in intermediate Keldysh regime

(From Uiberacker at al.)

Yudin-Ivanov theory for tunnel ionization 
of atoms:

• No cycle averaging

• : “non-adiabatic tunneling”
(between extreme cases of multi-photon 
emission and quasi-static tunnel emission)

Theory: 

• G. L. Yudin, M. Yu. Ivanov, Nonadiabatic tunnel 
ionization: Looking inside a laser cycle, PRA 2001

Experiments with atoms in gas phase: 

• Uiberacker et al., Attosecond real-time observation 
of electron tunneling in atoms, Nature 2007

• Colosimo et al., Scaling strong field interactions
towards the classical limit, Nat. Phys. 2008

• Eckle et al., Attosecond ionization and tunneling
delay time measurements in Helium, Science 2008
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Frequency comb: control of optical electric field
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Review: Udem, 
Holzwarth, Hänsch, 
Nature 2002
(2005 Nobel prize)

carrier-envelope
offset frequency
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Experimental setup

• Ti:Sa oscillator: ~780nm, 500mW, 6fs, 150MHz
• Spot radius on tip ~ 3 μm (1/e2)

Peak elec. field up to 5GV/m w/o field enh.

125 μm

100 nm

r=50 nm W tip,
780 nm light
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Stub emitter instead of tip
P = 530mW

500nm

1 μm radius stub with sharp 
features (r~100nm field 
enhancement)

For θ=0: 200 electrons per pulse (instantaneous current: 500μA).
If uniformly distributed over 65 fs and 1μm radius (worst case) 

current density ~15 kA/cm2

reduced brightness ~ 3 107 A/(m2 sr V)

60fs laser pulses
at 1 GHz
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Autocorrelator with tip as (non-linear) detector

delay (a.u.)

Utip = 652 V

delay (a.u.)

Utip = 330 V

delay 

Utip = 220 V

8fs laser pulses
at 150 MHz

Optical 2nd harmonic
AC trace (thin crystal)
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Tunable non-linearity

-10    -5      0       5     10
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Data and model-independent simulation

Simulation result with no adjustable
parameters.

Model: 
• Electron emission from surface state*

ground state wavefunction with
kinetic energy  = Fermi energy.

• Laser modulates barrier
• Integrate time-dep. Schrödinger eq. 

* T. Ohwaki, H. Ishida, A. Liebsch, PRB 68, 155422 (2003)
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Simulation: time-dependent flux
Driving laser electric field: 
8 fs pulse

Electron current: 
A single 700 as pulse

• 700 attosecond emission duration

• Electric field driven

• Pulse shaping with CE dependenceφ: carrier envelope
phase (CE phase)

Electron current:
Double pulse

P. Hommelhoff, C. Kealhofer, M. 
A.  Kasevich, PRL 97, 247402 
(2006)
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Atomic size emission area
30nm radius tip

Field ion
microscope

image

without
laser

Field 
emission

images

7 atoms emitting
~2nm diameter area

Up to 98(2)%
photoelectrons
(limited by
dark count rate)

with laser
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Kinematic pulse broadening during acceleration

Surface field 
strength: 2 GV/m

1.8 μm

const. field of 6 MV/m

~1 cm

r = 100 nm

Accelerate electron from 0 to 60 keV

Initial energy 
jitter

Timing jitter in 
uniform field

Timing
jitter with 
tip

6 eV (HL 0.7 fs) 950 fs 100 fs

0.5 eV 275 fs ~ 15 fs

Uniform acceleration:
const. field of 6 MV/m

1 cm

Uncertainty relation

8fs laser pulse 
width includedNo space charge yet! 
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Conclusion
Prompt electron emission from atomic scale 
source demonstrated. 100 MHz… 1GHz. Few 
electrons per pulse so far from sharp tip.

Sub-1 fs electron source; emission area 
diameter down to 2nm
Laser electric field driven emission process

o Direct proof of previous point
o Go to larger pulse charge: limits?

Brightness measurement of laser driven emission
Variation of tip size: increase radius of curvature, increase (space 
charge limited?) current
Join tip and dielectric structure: deflection, acceleration

Related work:
• PSI: ZrC tip
• PSI: Mo nanoarrays
• Philipps: FE from CNTs
• MBI: Au tips
• U Nebraska: W tips
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Open questions / future R&D
• Longer wavelengths: 1.1, 1.5, 2um instead of 800nm helpful as

• Keldysh parameter proportional to laser frequency
• structure size / aperture size of dielectric accelerator relaxed
• High power, high efficiency mode-locked (fiber) laser sources available

• Explore tips:
• larger tips: space charge issue relaxed, still high brightness, high stability
• other tip materials: exploit field enhancement
• explore Schottky effect for high brightness beams w/ photo-emission

• Measure brightness of laser triggered  electrons

• Explore photo-electric effect with tunable Schottky barrier:
High brightness , high quantum efficiency source?

• Arrays?

Tsujino et al.,  
PSI group
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