An SRF Injector for the ILC

Jőrg Kewisch, Ilan Ben-Zvi, Triveni Rao, Andrew Burrill, David Pate, Erdong Wang, Qiong Wu, Rob Todd Brookhaven National Laboratory, Upton, NY 11973 and Hans Bluem, Doug Holmes, Tom Schultheiss

Advanced Energy Systems, Medford, NY

Motivation

- RF electron guns can produce higher brightness beams than DC electron guns because of the field gradient at the cathode is higher
- A SRF electron gun may be capable of producing an electron beam with a small enough emittance to be accelerated in the ILC without a damping ring.
- Even if the damping ring can not be avoided a lower emittance injector might be advantageous.

ILC beam parameters at the entrance of the main linac

Parameter	Nominal	Low charge
Horizontal Emittance	8μ	8μ
Vertical Emittance	0.02 µ	0.02 µ
Energy spread	0.15 %	0.15 %
Bunch length	0.3 mm	0.2 mm
Bunch charge	3.2 nC	1.6 nC

What needs to be done

• Simulation of beam transport including

- magnetized/flat beam
- space charge
- bunch shaping

• Bunch shaping

- An ellipsoid distribution is necessary to reach the required emittances
- A Beer can distribution gives a 4D emittance of 1.1 μ .
- Survival of a GaAs cathode in an SRF gun
 - The quantum efficiency of the cathode can be destroyed by electron and ion back-bombardment. Remedies are good vacuum and geometry.

Magnetization and round-to-flat conversion

Magnetization:
$$M = \beta \gamma (\langle x \cdot y' \rangle - \langle y \cdot x' \rangle) \qquad L \equiv \frac{M}{2} = \frac{q \cdot B \cdot r_{cath}^2}{2m_e c}$$

Round beam: $\varepsilon_{eff}^2 = \varepsilon_{4D}^2 + L^2$

Flat beam:
$$\varepsilon_x = \varepsilon_{eff} + L \approx M + \frac{2\varepsilon_{4D}^2}{M}$$
 $\varepsilon_y = \varepsilon_{eff} - L \approx \frac{\varepsilon_{4D}^2}{M}$
 $\varepsilon_{4D} = \sqrt{\varepsilon_x \cdot \varepsilon_y} = 0.4\mu$ and $M = \varepsilon_x - \varepsilon_y = 8\mu$

Jörg Kewisch, July 10, 2009, R. H. Siemann Symposium

2

~

SRF Gun

• 350 MHz

- Peak field on the cathode: 24.5 MV/m
- Peak field on the cavity walls: 43MV/m
- Beam energy at the exit of the gun: 5 MeV

Cathode Magnet

- Large cathode radius (6.5 mm) requires small field (11 Gauss)
- Two separate coils are used to produce a uniform field
- Magnets are turned on after cool-down, field does not penetrate Niobium

Bunch Shaping

- Deviation from ellipsoid shape compensates space charge asymmetry of space charge forces during emission
- A thermal emittace of 0.03 eV is assumed for a GaAs cathode at 80° K (liquid nitrogen temperature)

Emittances

GaAs cathodes in RF guns

- The quantum efficiency of GaAs cathodes is destroyed by ion back-bombardment. All successful GaAs guns are DC guns with a vacuum level of 10⁻¹¹ torr.
- Normal conducting RF guns have 10⁻⁹ torr due to out-gassing caused by the RF field. Quantum efficiency life times of 10 seconds have been measured.
- Superconducting RF guns can have a vacuum of better than 10⁻¹¹ torr due to cryo-pumping.
- Only ions created close to the cathode will hit the cathode with energies ~ 2 keV (E. Pozdeyev, PRST-AB).
- Little electron bombardment from field emission electrons. SRF cavity treatment reduces dark currents.
- The SRF gun may be poisoned by boiled off cesium. We believe this effect is negligible, but it will be measured.

BROOKHAVEN

Requirements for the Experiment

- Good vacuum (10⁻¹¹ torr) before cool-down.
- High current density (10 μA from a 1mm \varnothing cathode). Ions will hit close to the center of the cathode.
- High gradient (15-20 MV/m) for realistic field emissions.
- Easy removal of the cathode without loss of vacuum.
- Preparation chamber for the regeneration of cathodes. Preparation includes heating of the cathode (exact temperature) and replenishment of the cesium layer.
- Radiation protection (200 rad/h @ 1 m distance).
- We will not measure the spin polarization.

Test results

- Q=1.5·10⁸ @4.2 deg K.
- Heat load 5 W.
- Vacuum with cryo-pumping < 10⁻¹¹ torr.

Transporter Mechanism and Preparation Chamber

Preparation chamber contains:

- Cesium source
 - •Uniformity of deposit has been tested
- Heating mechanism 560°C
- •Quantum efficiency measurement

BROOKHAVEN

Cathode Preparation Chamber

Electron bombardment

- Experiment at BINP measures 10 seconds life time
- Bad vacuum does not explain short life time
- Dark currents from field emission are small (H. Bluem, AES)
- Aleksandrov (BINP) suggests bad lifetime is caused by electron bombardment with electrons emitted from the cathode

Electron trajectory on axis

Energy deposited by electrons

Impact phase vs. start phase

Drift Velocity in GaAs

Emission range of secondary electrons due to the delay caused by drifting inside the cathode material.

NATIONAL

BROOKHAVEN NATIONAL LABORATORY

Conclusion

- Measurement of cathode life time scheduled for summer 2009.
- Ion bombardment damage should be less severe than in a DC gun.
- Electron bombardment with up to 350 keV electrons
- Multipacting can be avoided using a thin GaAs crystal and/or low frequency guns .

BROOKHAVEN NATIONAL LABORATORY

