œ

lrfu

CP Violation at BABAR α and γ

Christophe Yèche CEA-DAPNIA/SPP, Saclay, France

Outline:

- > Methodology in B factories
- > Measurements of α
- > Direct CP violation
- \succ Measurements of γ

B-Factory Symposium, October 27th, 2008, SLAC

Angles of Unitarity Triangle BaBar Methodology

CP Violation and CKM Matrix

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

B⁰→ππ, ρπ, ρρ V_{td}V_{tb} V_{ud}V_{ub} β V_{cd}V_{cb} ρ $B^0 \rightarrow J/\psi K_s$ $B^{\pm} \rightarrow D^{0}K^{\pm}$ angle α 6.5 -0.5 ngle y -0.5 -1 0 0.5 -0.5 0.5

3

Representation with Unitary Triangle: > The angles (α, β, γ) are related to CP violating asymmetries in specific B decays

Ch. Yèche B-Factory Symposium

CP Violation at BaBar

October 27, 2008

 $\overline{0}$

Signal Selection

Continuum $(u\overline{u}...c\overline{c})$ event rejection:

- > Kinematical variables:
 - The beam-energy substituted mass Resolutions $\sigma(m_{\rm ES})\approx 2.6~{\rm MeV/c^2}$
 - The energy difference Resolutions $\sigma(\Delta E) \approx 26 \text{ MeV}$

$$m_{ES} = \sqrt{E_{\text{beam}}^{*2} - p_B^{*2}}$$

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

> Event-shape variables combined in a neural network or Fisher discriminant to suppress jet-like continuum events.

Analysis strategy

The analyses $(B^0 \rightarrow \pi\pi, \rho\rho, \rho\pi)$ for α or $(B^{\pm} \rightarrow D^{0(*)}K^{\pm(*)}...)$ for γ share the same philosophy and use very similar techniques:

> Unbinned maximum likelihood fit combining m_{FS} , ΔE , NN/F, Δt , Dalitz variables, resonance mass or helicity > Each component (signal, backgrounds...) has its own modeling ("PDF") in the likelihood > Few hundreds of PDF per likelihood \Rightarrow BaBar : Pdf Factory > Sophisticated methodology to "observe" the signal: sPlots...

B. Pascal (1645)

What's the gain?

α : $B^0 \rightarrow \rho^+ \rho^-$	σ(C)	$\sigma(S)$
BELLE 535M BB	0.21	0.30
BABAR 387M BB	0.15	0.20

 $\gamma : B^+ \twoheadrightarrow D^0 K^+$ $\sigma(x^+)$ $\sigma(y^+)$ BELLE 657M BB 0.043 0.059 BABAR 383M BB 0.043 0.055

CP Violation at BaBar

Ch. Yèche

Time-dependent Asymmetry

$$A_{hh}(\Delta t) = S_{hh} \sin \Delta m_d \Delta t - C_{hh} \cos \Delta m_d \Delta t$$

For single weak phase

$$C_{hh} = 0 \quad S_{hh} = \sin(-2(\gamma + \beta)) = \sin(2\alpha)$$

 $\succ \alpha$ may be extracted directly from S as for β .

With an additional weak phase

$$C_{hh} \neq 0$$
 $S_{hh} = \sqrt{1 - C_{hh}^2} \sin(2\alpha_{\text{eff}}) \neq \sin(2\alpha)$

Need additional information to estimate penguin contribution (BF(B⁰→h⁰h⁰) ...)
 Use Isospin SU(2) symmetry

SU(2) Symmetry: Isospin Triangles

Similar approaches for $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$:

Two Isospin relations (one for (B^0,B^+) , one for (\overline{B}^0,B^-)) *M. Gronau, D. London, PRL, 65, 3381 (1990)*

$$\mathcal{A}(B^+ \to h^+ h^0) = 1/\sqrt{2} \cdot \mathcal{A}(B^0 \to h^- h^+) + \mathcal{A}(B^0 \to h^0 h^0)$$

> Neglecting EW penguins, B⁺ → h⁺h⁰ (I=2) is pure
tree diagram
$$A(B^+ → h^+h^0) = \overline{A}(B^- → h^-h^0)$$
> Representation with a triangle with a common side
> Triangle relations allow determination of
penguin-induced shift in α
$$K^{+-} = 2(\alpha_{eff} - \alpha)$$
> Four-fold ambiguities
$$K^{+-} = 2(\alpha_{eff} - \alpha)$$
Solution at BaBar
$$K^{+-} = \frac{1}{\sqrt{2}}A_{hh}^{+-} + \frac{1}{\sqrt{2}}A_{hh}^$$

Measurement of α with $B^0 \rightarrow \pi^+ \pi$

> Time dependent analysis similar to $sin(2\beta)$ measurements

> CP Violation for both C_{+-} and S_{+-}

CP Violation at BaBar

Measurement of α with $B^0 \rightarrow \pi\pi$

- > "Large" BR for $B^0 \rightarrow \pi^0 \pi^0$ > Large fraction of penguin contamination
- > Isospin analysis is required

$$BF(\pi^{0}\pi^{0}) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$$
$$C_{00} = -0.43 \pm 0.26 \pm 0.05$$
$$BF(\pi^{\pm}\pi^{0}) = (5.02 \pm 0.46 \pm 0.29) \times 10^{-6}$$
$$BF(\pi^{\pm}\pi^{-}) = (5.5 \pm 0.4 \pm 0.3) \times 10^{-6}$$

Measuring α with $B^0 \rightarrow \rho^- \rho^+$ decays

Analysis more complex:

- > $2\pi^0$ in the final state.
- \geq Wide ρ resonances.
- V-V decay: L=0,1,2 partial waves : Longitudinal: CP-even state. Transverse: Mixed CP states. Analysis based on ρ polarization.

Eventually a very efficient mode:

> BF~ 5 times larger than for $B \rightarrow \pi\pi$. > Penguin much smaller than in $\pi\pi$. > ρ are ~100% longitudinally polarized.

> Almost a pure CP-even state!

 $C_I^{+-} = 0.01 \pm 0.11 \pm 0.06$

 $S_{I}^{+-} = -0.17 \pm 0.20_{-0.06}^{+0.05}$

α with $B^0 \rightarrow \rho^- \rho^+ / \rho^0 \rho^0$ and $B^+ \rightarrow$

50

40

CP Violation at BaBar

CP asymmetries in $B^0 \rightarrow \rho^0 \rho^0$:

- > Small BF for $B^0 \rightarrow \rho^0 \rho^0$ > In contrast with $\pi^0 \pi^0$, decay vertex can be reconstructed ($\rho^0 \rightarrow \pi^+\pi^-$).
- > Time-dependent analysis feasible.
- \blacktriangleright Measurement of C₁⁰⁰ and S₁⁰⁰
- \Rightarrow Over-constrained isospin relations

$$BF(\rho^{0}\rho^{0}) = (0.92 \pm 0.32 \pm 0.14) \times 10^{-6}$$
$$f_{L}^{00} = 0.75_{-0.14}^{+0.11} \pm 0.05$$
$$C_{L}^{00} = 0.2 \pm 0.8 \pm 0.3$$
$$S_{L}^{00} = 0.3 \pm 0.7 \pm 0.2$$

465M B B arXiv: 0807.4977

(deg)

 α - α_{eff}

October 27, 2008

sianal events

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

> Dominant decay $B^0 \rightarrow \rho^+ \pi^-$ is not a CP eigenstate > Two-body Isospin analysis not viable: 5 amplitudes need to be considered $B^0 \rightarrow \rho^+ \pi^- / \rho^- \pi^+ / \rho^0 \pi^0$ and $B^+ \rightarrow \rho^+ \pi^0 / \rho^0 \pi^+$ Isospin Triangle P Isospin Pentagon.

> Better approach: Time-dependent Dalitz analysis assuming SU(2):

30

25

20

10

5

0

0

 $\rho^+\pi^-$

Ch. Yèche

 $\rho^{-}\pi$

10

15

 $m^2(\pi^+\pi^0)$

 $0^0\pi^0$

20

25

B-Factory Symposium

30

m²(π⁻π⁰)

$$A(B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = f_{+}A(\rho^{+}\pi^{-}) + f_{-}A(\rho^{-}\pi^{+}) + f_{0}A(\rho^{0}\pi^{0})$$

$$\overline{A(B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0})} = f_{+}\overline{A(\rho^{+}\pi^{-})} + f_{-}\overline{A(\rho^{-}\pi^{+})} + f_{0}\overline{A(\rho^{0}\pi^{0})}$$

$$F_{k} \ relativistic$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0} \ (kin.)$$

$$A. \ Snyder \ and \ H. \ Quinn,$$

$$Phys. \ Rev. \ D, 48, 2139 \ (1993)$$

$$here \ F_{k} \ relativistic$$

$$F_{k} \ relativistic$$

$$F_{k} \ relativistic$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0} \ (kin.)$$

$$F_{k} \ relativistic$$

gives information on strong phases between resonances.

Summary on O.

> The 3 decays modes $B \rightarrow \pi\pi/\rho$ π (Dalitz)/ $\rho\rho$ give consistent and complementary measurements of α .

Single solution when combining the three methods!

> Eventually, better result for α than this expected in the BaBar Physics Book (1998)

Stay tuned : new BaBar results are coming!!!

Intermezzo

Direct CP Violation

First observation of direct CP Violation

467M BB arXiv: 0807.4226

$$A_{CP} = -0.107 \pm 0.016^{+0.006}_{-0.004}$$

with 6.1 significance

Preliminary $B^{0} \rightarrow K^{+}\pi^{-}$ $B^{0} \rightarrow K^{-}\pi^{+}$ $B^{0} \rightarrow K^{-}\pi^{+}$ $K^{-}\pi^{+}$ $K^{-}\pi^{+}$ $K^{-}\pi^{+}$

> ➢ Effect much larger than in K⁰- \overline{K}^0 system and the discovery was much faster: K⁰- \overline{K}^0 1964 →1999 B⁰- \overline{B}^0 2001 →2004

> Now, direct CP violation is observed in many other modes (for instance, $B^{\pm} \rightarrow D^{0}(\overline{D}^{0})^{(*)}K^{\pm(*)}$ see next slides)

Measurement of γ

Several methods but all are based on the same principles:

- \succ Tree decays $B^{\pm} \rightarrow D^{0}(\overline{D}^{0})^{(*)}K^{\pm(*)}$
- \succ Interference between a Cabibbo-suppressed (b \rightarrow c) tree decay and a CKM- and color-suppressed ($b \rightarrow u$) tree decay \succ Decay of $D^0(\overline{D}^0)$ to a common final state f

Measurement of γ

Direct CP violation with $B^{\pm} \rightarrow D^{0}(\overline{D}^{0})^{(*)}K^{\pm(*)}$ **GWL** (Gronau-Wyler-London): f is an eigenstate ($\pi\pi$, KK) \Rightarrow Small interference, sensitivity to γ , small sensitivity to $r_{\rm B}$ > ADS (Atwood-Dunietz-Soni) $\overline{D}^0 \rightarrow f$ is doubly-Cabbibo- suppressed (K π) \Rightarrow Larger interference, sensitivity to $r_{\rm R}$ (no observation) > **GGSZ** (Giri-Grossman-Soffer-Zupan) $D^{0}(\overline{D}^{0}) \rightarrow K_{S}\pi^{+}\pi^{-}$ (Dalitz plot) \Rightarrow Larger interference, sensitivity to both $r_{\rm B}$ and γ \Rightarrow Best method currently

Several complementary Techniques:

- > $B^0 \rightarrow D^0(\overline{D}^0)^{(*)}K^{0(*)}$: CKM suppression only $r_B \sim 0.4$; low statistics yet
- > Time-dependent CP violation in $B^0 \rightarrow D^{(*)}\pi$, $D^{(*)}\rho$

19

 \Rightarrow Measurement of sin(2 β + γ)

γ with GLW method

Final States: ≻KK, ππ (CP=+1), K⁰π⁰, K⁰ω (CP=-1)

4 observables:

 \geq 2 CP asymmetries and 2 ratio of BF

3 unknowns :

 \succ Strong phase $\delta_{\rm B},\,r_{\rm B}$ and γ

> 8-fold ambiguities, small sensitivity to r_B

Ratio of BFs

$$R_{CP_{\pm}} = \frac{\Gamma(B^- \to D_{CP_{\pm}}^0 K^-) + \Gamma(B^+ \to D_{CP_{\pm}}^0 K^+)}{[\Gamma(B^- \to D^0 K^-) + \Gamma(B^+ \to D^0 K^+)]/2}$$
$$= 1 + r_B \pm 2r_B \cos \delta_B \cos \gamma$$

CP asymmetries

$$A_{CP\pm} = \frac{\Gamma(B^- \to D^0_{CP\pm}K^-) - \Gamma(B^+ \to D^0_{CP\pm}K^+)}{\Gamma(B^- \to D^0_{CP\pm}K^-) + \Gamma(B^+ \to D^0_{CP\pm}K^+)}$$
$$= \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B \pm 2r_B \cos \delta_B \cos \gamma}$$

with Dalitz method

> Use interference in Dalitz plot $B^{\pm} \rightarrow D^{0}(\overline{D}^{0})K^{\pm}$ decay > Sensitive to r_{R} , strong phases δ and the CKM phase γ

> Two-fold ambiguity remains in γ extraction

y with Dalitz method

383M BB PRD 78 034023 (2008)

> With a frequentist approach, constraints are derived on $r_B^{(*)}$, κr_s and γ

> Smaller values of $r_B^{(*)}$, κr_s than BELLE

Error on
$$\gamma \propto (1/r_B)$$

$$\gamma = 76^{\circ} \pm 22^{\circ} \pm 5^{\circ} \pm 5^{\circ}$$

> 3 σ direct CP violation

sin(2 β + γ) with $B^0 \rightarrow D^{(*)\pm}\pi^{\pm}/\rho^{\pm}$

- > CP violation from interference between 2 decays through (B^0, \overline{B}^0) mixing. > Time -dependent asymmetry to measure sin $(2\beta+\gamma)$.
- > Two complementary approaches :
 - > Full reconst. of $D\rho$, $D\pi$ and $D^*\pi$.
 - > Partial reconst. for $D^*\pi$ only.

|sin(2β+γ)|>0.64 @68% CL

232M BB PRD71, 112003 (2005) 232M BB PRD73, 111101 (2006)

Summary on γ

> Need to combine the various approaches (GWL, ADS, GGSZ...)

>The Dalitz method dominates the average and is consistent with CKM fits

Internal consistency with other indirect CKM constraints

> Much better than what was predicted in the BaBar Physics Book (1998)

>Unitarity Triangle: Consistent results between the measurements of the angles (α , β and γ) and those of the UT sides (Δm_d , Δm_s , $|V_{ub}|$).

- > Impressive confirmation of SM in guark-flavor sector!!! \succ Errors on UT angles α, β, γ are still decreasing and are still limited by statistics!!!
 - > More to come with future accelerators and projects