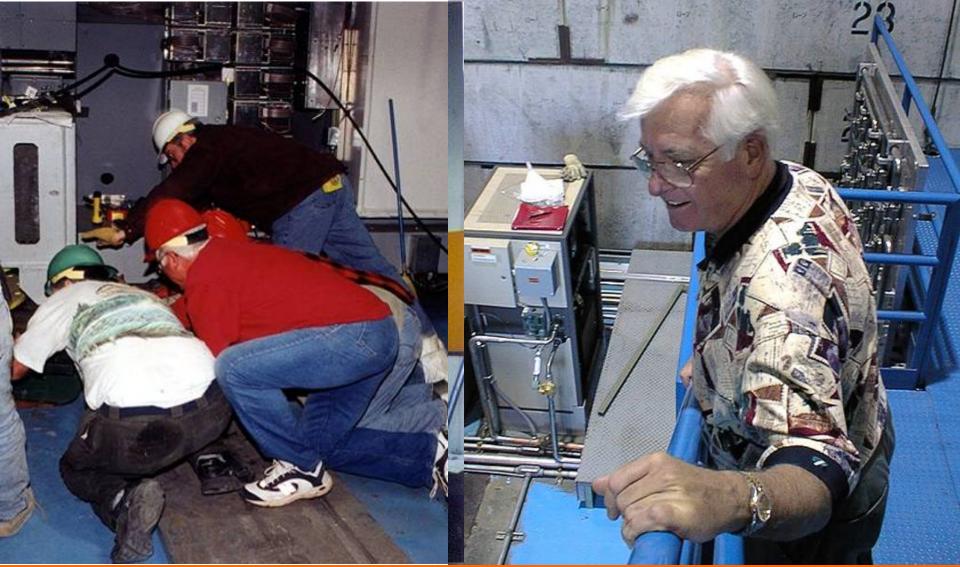
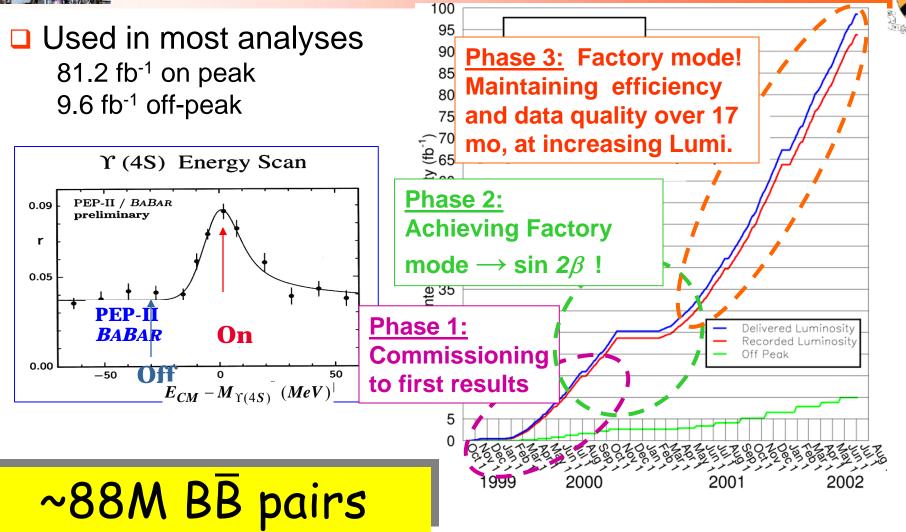
BaBar Becomes a Physics Machine: the first 100 fb⁻¹


Stewart Smith Princeton University

> BaBar Symposium October 27, 2008

1

To Bob Bell



BaBar Symposium

October 27,2008

BaBar Data Set at end of the 2002 Run

Phase 1: Commissioning to 1^{st} results (May '99 \rightarrow July '00)

Shakedown of detectors, DAQ, Online, Computing

- Operations manager and a series of outstanding, dedicated Run Coordinators quickly established procedures, shifter training, Q/A, etc. that served us in good stead all the way "to the end."
- Provide feedback to PEP II on backgrounds, protection of SVT, DCH, etc. as they work to increase luminosity.
 - Liason shifter in PEPII Control Room 24/7
 - Meetings every day at 8AM, Friday PEPII/BaBar meeting, Saturday brainstorming.

Phase 1: Improving performance

- Goal: achieve TDR specs for all systems and physics analyses.
- Involves "everything and everyone:" Detector, electronics, online, monitoring, offline analysis, computing, physics
- New forum needed Technical Board was too high level, and too focused on detector
 - Bring together the people working in the trenches on the detector, computing, and analysis.
 - The ~50-member ATB (Augmented Technical Board) was born in Sept '99.

Mission of the ATB (RIP)

- Compile realistic resource-loaded schedule
 - Determine and manage critical path to physics results
 - Motivated by 10fb⁻¹ expected in time for ICHEP00 (end July 2000).
- Identify areas needing and/or profiting from collaboration among systems.
- Spot problems in time to minimize impact on schedule or performance.
- Encourage cross-fertilization.
- The ATB was an essential tool during its 2 year existence meeting 21 times, most often for 3-4 hours!
- Best of all, it put itself out of business by helping us achieve full factory operations!
- If you weren't there and would like to learn about life in BaBar during the early running, good documentation of all the meetings is accessible from the BaBar Organization page.

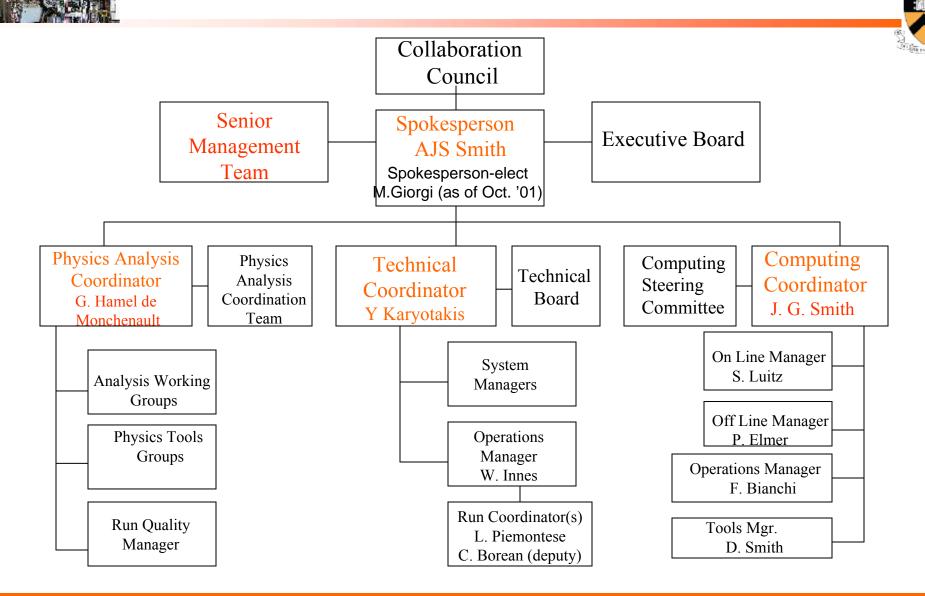
View in spring '00

- PEP-II, Detector and Physics Analysis performing well.
- Prospects for bursting onto the world scene at ICHEP00, in Osaka at the end of July.
- But, computing group has a tiger by the tail!
 - Luminosity came up very fast, forcing them to concentrate on short-term issues to prevent data "falling on the floor." (None did!)
 - Performance did not scale to the large number of parallel machines needed to keep up.
 - Ominous cost implications for extended running at luminosities 3-4 times design.

Phase 2: Achieving factory mode and the drive to discovery $(5/00 \rightarrow 7/01)$

- Use experience from first year of running to plan for operating with increased Lumi: from 10³³ to 10³⁴
- Upgrades Committee Report April '00
 - Good news :
 - The SVT, DCH, DIRC, EMC and DAQ will survive for years, and with nominal improvements will maintain their great performance.
 - Backgrounds can be mitigated to be tolerable for years
 - Bad news:
 - Massive increases needed in computing performance and budget.
 - The RPC's have serious problems that, if not understood and mitigated, will require their replacement.

The International Finance Committee was supportive, contingent upon a successful external Technical Review (aka Gilchriese review).


Phase 2 gets underway – 5/00

Division of forces:

- Spokesperson and his management team focus on run in progress:
 - Operations, computing, analysis.
 - Preparation of first results for ICHEP 00 at end of July.
- Spokesperson-elect deals with the long haul: upgrades, revised management structures for factory operation, assembling new management team.
- First run is great success: highly-professional, sophisticated, professional analyses produce excellent results for ICHEP00:
 - Likelihood fits, fully-blind analyses to increase reliability and precision.
 - > B^{0} Mixing, Lifetimes, CPV (sin2 β), etc. based on 10fb⁻¹

New BaBar Organization Chart

Senior Management Team

- Spokesperson
- Technical Coordinator
- Physics Analysis Coordinator
- Computing Coordinator
- Senior Technical Advisor/SLAC contact
 - Bill Wisniewski
- Deputy Computing Coordinator
 - Stephen Gowdy
- Spokesperson-elect (alternate years)
 - Marcello Giorgi (Sept '01)

Past Spokesperson (alternate years, beginning Sept '02)

Highlights from charge to the BaBar Technical Review Committee

- Please evaluate the adequacy of our plans for items to be completed by the end of 2003, to respond to PEPII luminosities increasing from the current level of 2× 10³³ to 10³⁴; and comment on the credibility of the projected costs.
- In particular, please evaluate and comment on:
- 1. The **computing model**: CPU, disk, tapes, capability, access, etc.
- 2. The Instrumented Flux Return (IFR): performance, prognosis, and planned improvements.
- Upgrade plans for the detector systems, front end electronics, DAQ, and the trigger, particularly the rejection rates for the L1 z trigger
- 4. **R&D on detector aging** and performance improvements
- 5. Schedule for replacing SVT modules, radiation damage tests, and schedule of R+D for a later replacement of the SVT.

Technical Review set for October '00

Critical milestone for BaBar's future.

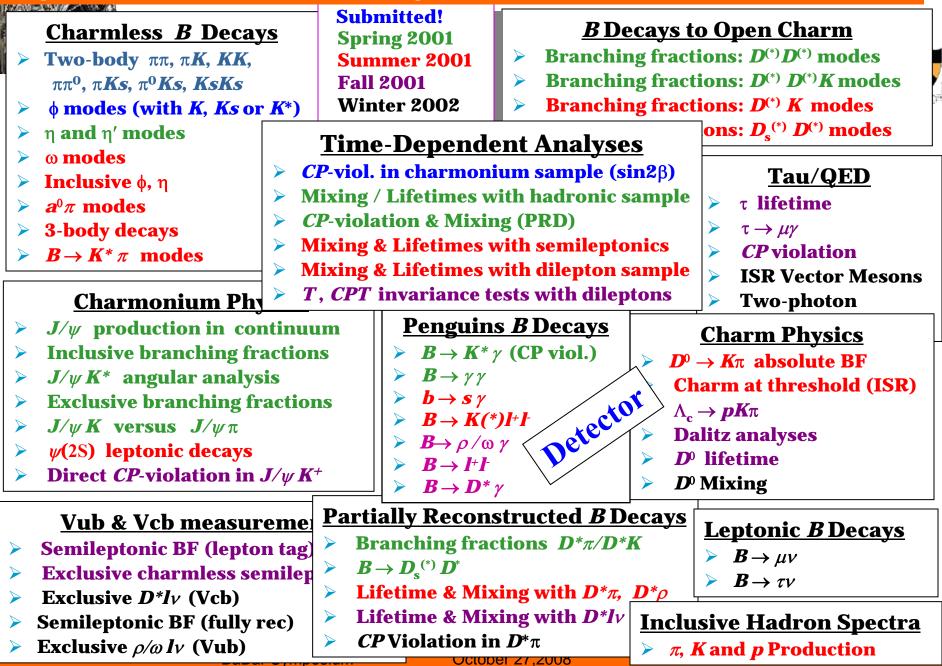
- What if we failed??
- Combined with the Upgrades Committee report, this review served as the perfect driver for our long-range planning.
- Investment in preparations and documentation for the review had a second purpose, to expedite the writing of a comprehensive NIM paper on the BaBar detector.

Technical Review, conclusions

- Plans and estimates for most of the detector improvements are sound, and should proceed as presented.
- IFR is a serious problem that must be quickly resolved.
- Computing enhancements are generally well justified, but serious issues must be addressed, including cost.
 - Multiple Tier-A sites present promising opportunity
 - More attractive to funding agencies than cash contribution to SLAC

Computing Problems

Prompt Reconstruction:


- a huge amount of hard work in winter-spring '01 by many people in BaBar and SCS increased performance sufficiently to save the experiment. Linux boxes, multiple farms, etc.
- Off Line: Data storage, access, processing, simulation, analysis.
 - Huge cost of increased luminosity caused crisis in 2000.
 - Spurred consideration of distributed model:
 - Countries provide 'in-kind' computing support via large "Tier-A" centers comparable to SLAC.
 - Store and process complementary data.
 - Provide convenient, efficient remote access

The solution: a pioneer Grid

- French proposal at Dec '01 IFC meeting:
 - Include computing resources in Operating Common Fund, with algorithm to calculate credit for CPU's, disks, tapes, etc.
 - \succ To qualify, a Tier-A center must provide efficient access to all.
 - Everyone must contribute to producing the tools to make this work.
- □ Agreement reached at special IFC meeting (Paris, Jan 01).
 - New International Computing Steering Committee set up
 - Tier A's set up in France, Italy, UK, and Germany
- Ensured adequate computing for the balance of the experiment.
- Engendered an even-stronger level of cooperation throughout the collaboration

Physics Dashboard: Projected Publication Schedule

Summary to June 23, 2001 Collaboration Meeting, at the height of the push to observe CP violation

Seems to describe a physics machine!!

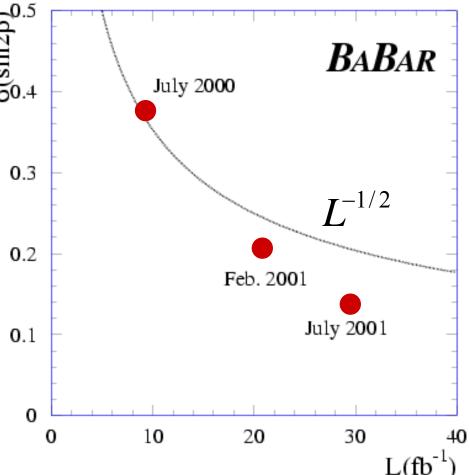
Can we sustain it?

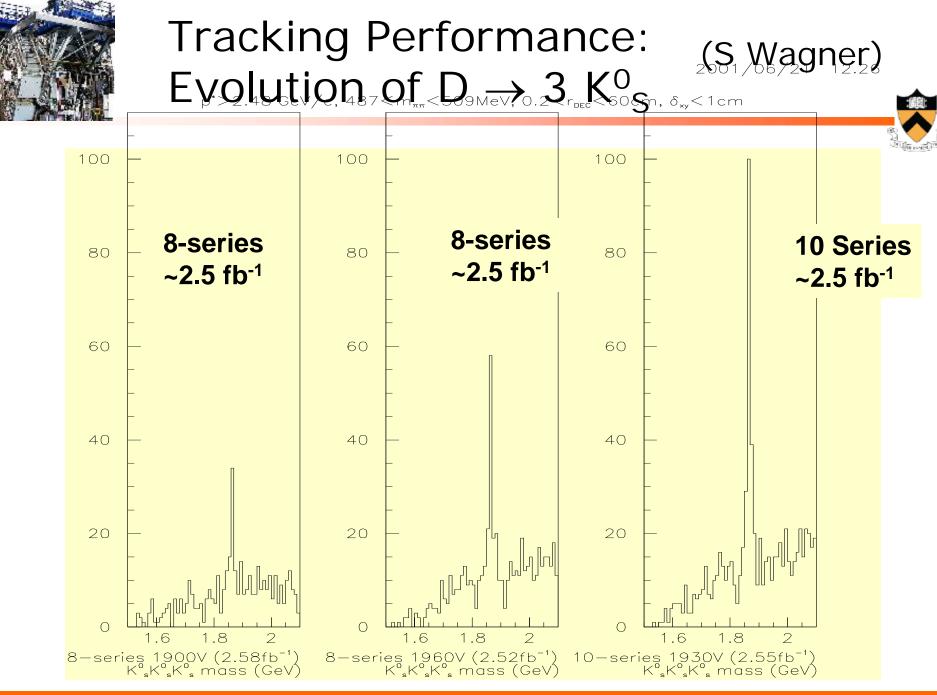
Highlights since last meeting

- PEPII/BaBar performance:
 - Steady increase in peak and *integrated* luminosity (189 pb⁻¹ in 24 hours yesterday; >150 pb⁻¹/day is common.
 - BaBar efficiency is consistently ~ 97-98 %
- OPR and Reprocessing:
 - Major improvements: >400 pb⁻¹/day regularly over 3 farms when doing normal runs. (300 till one farm finishes crunching the short runs of Feb/Mar.)
 - OPR Farm alone: 140 pb⁻¹/day
 - ▶ 9.2 fb⁻¹ of 2001 data is now available, rest next weekend.
 - Change to linux making good progress
 ⇒ will let us keep up with data till June 2002
 - ▶ Work underway on longer-term solution for >10³⁴.
- Analysis tools and data quality:
 - Steady improvements in every detector system, alignment, tracking, vertexing, PID, etc.
 - Equivalent to increasing luminosity while reducing systematics
 - ~ 40% more CP events/ fb⁻¹ in 2001 data than 2000!!!
- Physics:
 - Quality standards for results and publications have been set high, and authors have embraced them. A great culture!
 - Speakers have done us proud with excellent presentations.
 - The publication schedule is more or less holding.

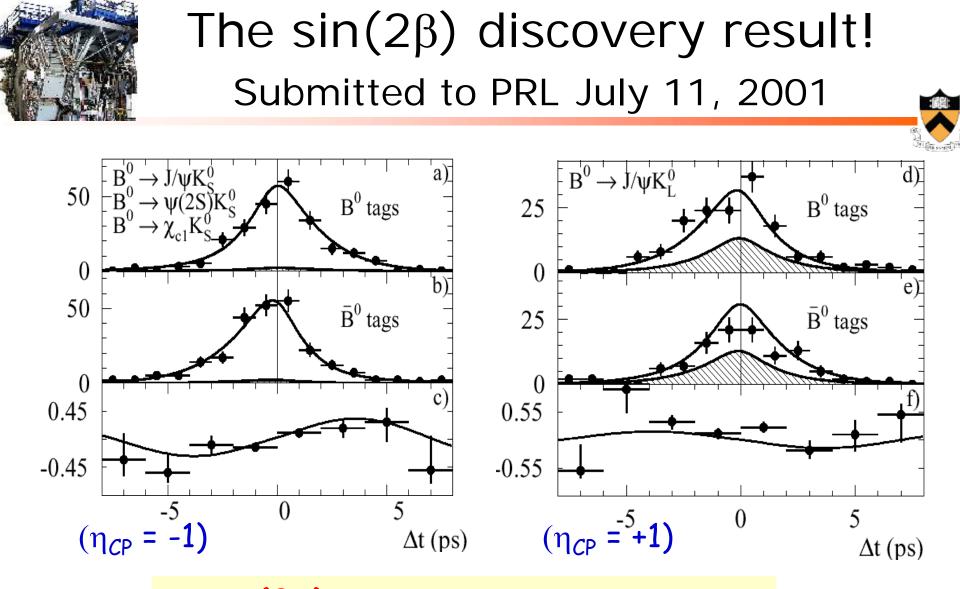
June 23, 2001

Collaboration Meeting


6



Analysis improvements in 2001



Steady improvements in g(sin2β) •: alignment, tracking, vertexing, PID, etc. Equivalent to increasing luminosity ~ 40% more CP events/ fb⁻¹ in 2001 data than 0.3 2000!!! ~ 10% over all efficiency improvement from better alignment 0.2 Purity of $J/\psi K_1$ sample improved by 20% 0.1 Additional modes in CP sample \blacktriangleright B \rightarrow J/ ψ K* 0 \succ B $\rightarrow \chi_c$ K_S 0

October 27,2008

 $\frac{\sin(2\beta) = 0.59 \pm 0.14_{stat} \pm 0.05_{syst}}{\text{Prob. of this result if CP is conserved}} : <3 \times 10^{-5}$

October 27,2008

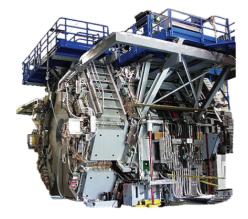
22

BaBar Symposium

October 27,2008

Phase 3: The well-oiled science machine.

- BaBar becomes flagship accelerator experiment in HEP
- Postdocs flood the faculties, new cohort joins the fun
- Detector performance remains excellent, improvements proceed as proposed
 - IFR Group greatly expanded to replace end-cap RPC's
 - Committee appointed to evaluate proposed options for replacing the barrel RPC's. (LST option is chosen.)
- Tremendous set of results for ICHEP02 in Amsterdam, followed by flood of refereed publications.
- Pioneer Grid Computing is a big success, but Objectivity event store remains problematic.
- □ New "Computing Model 2."
 - Committee appointed in summer '02 recommends Root-based system to be implemented by 2004.
 - Finished in 2003, a year ahead of schedule.


BaBar Highlights

DOE Review April '02

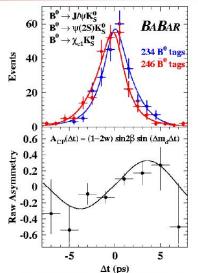
- BaBar has been running for 14 months now, perhaps a record for a high energy experiment. Three more months to go !!
- Total accumulated luminosity ~77 fb⁻¹. The goal is 100 fb⁻¹ by 1st of July.
- Regularly we integrate twice the designed daily luminosity.
- Average overall detector efficiency ~97.5%
- Detector performance reaches and in some cases exceeds TDR goals.
- Detector life time higher than initially expected.
- Short term plans
 - Replace misbehaving RPC chambers in the forward end cap (this summer) and the barrel, gradually.
 - Improve Level 1 trigger by adding z information to the tracking
 - Replace irradiated SVT modules, and radiation protection system
- Long term plans
 - Work with PEPII and the laboratory to plan for increasing luminosity

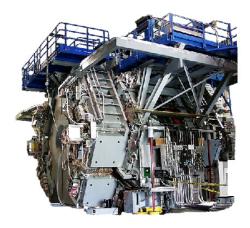
BaBar Status and Improvement Plans

Stewart Smith Princeton University

Presentation to HEPAP October 30, 2000

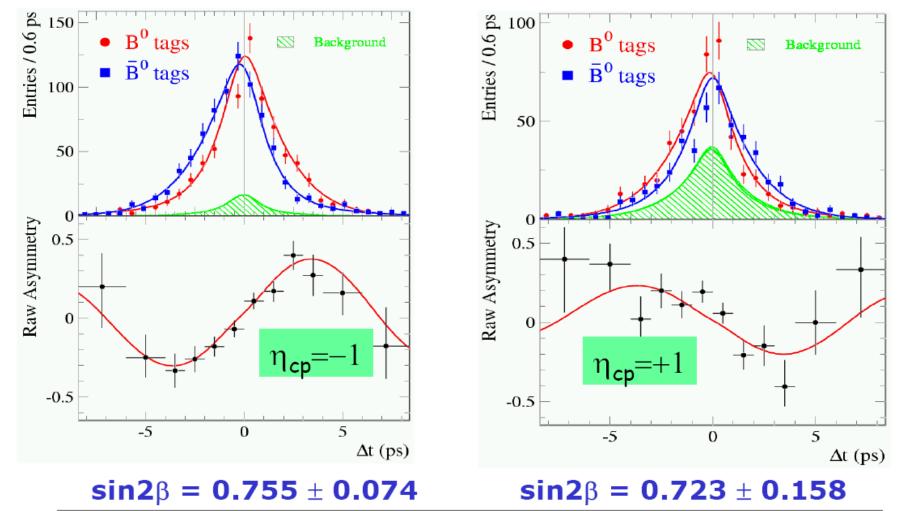
Stewart Smith Princeton University


> HEPAP Meeting Snowmass July 13, 2001


Stewart Smith Princeton University

Presentation to HEPAP Washington, October 29, 2001

BaBar Symposium



Stewart Smith Princeton University (for the collaboration)

HEPAP Meeting Cornell, August 6, 2002

Octo

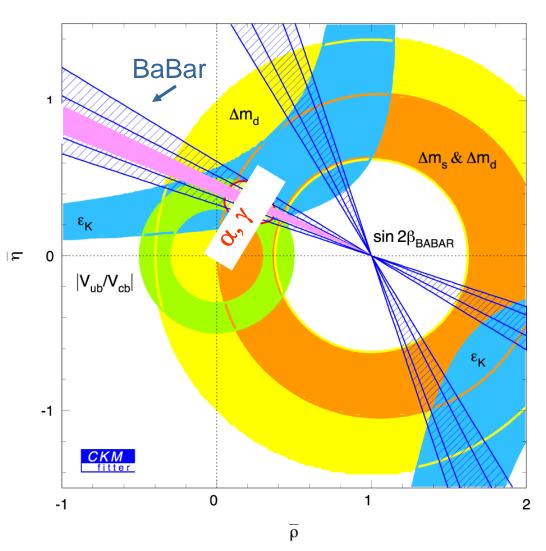
CP in $B^0 \rightarrow Charmonium + K^{0(*)}$

$\sin 2\beta = 0.741 \pm 0.067 \text{ (stat)} \pm 0.033 \text{ (syst)}$

October 27,2008

Submitted to PRL, hep-ex/0207042

August 6, 2002


AJS Smith, HEPAP Meeting

26

Constraining the ρ , η plane

New Belle result July 29: $\sin 2\beta = 0.72 \pm 0.074 \pm 0.035$ Unofficial World Average: 0.73 ± 0.055

Highly likely that CKM phase explains Observed CP Violation in K's and B's

(So far!)

Method as in Höcker et al, Eur.Phys.J.C21:225-259,2001

The SLAC B Factory – A major success story for DOE Science

- PEPII is the realization of proposals for similar facilities in the US and in different countries
- On-time, on-budget; example of DOE and Office of Science's ability to manage a major multi-lab, multination project
- All design parameters exceeded two years after first collisions, PEP-II delivers and BABAR records twice the design daily integrated luminosity
- Physics "fountain" 15 papers in publication chain, including the first discovery paper. ~ 35 more in the "best of" category to follow in next 9 months

October 29, 2001

SLAC/LBL/LLNL

HEPAP Meeting

And: we've all had a lot of fun!

