The Future of Heavy Flavor Physics

Marcello A. Giorgi Università di Pisa & INFN Pisa October 27,2008 SLAC

INFN

Outline

Present status in Flavor Constraints on CKM parameters Leptonic sector

Flavor to New Physics

Reference to most of material on SuperB Physics can be found in Proceeding of the VI SuperB Workshop Valencia(Spain) January 8-15,2008

How move to New Physics

Move to New Physics in two ways:

Relativistic way

LHC (Energy Frontier)

Quantum way

Flavor (High precision measurements)

The two ways are complementary

- After the famous BNL experiment in 1964 with the discovery of CP Violation in the kaon mixing [J.H.Christenson, J.W. Cronin, V.L Fitch and R. Turlay. Phys Rev Lett.13(1964)] from the observation of the BF($K_L \rightarrow \pi + \pi = (1.076 \pm 0.08) \times 10^{-3}$, more recently (1999) the CP violation in the decay (direct CP violation) has been established.
- At CERN [A.Lai *et al.* Phys Lett B 465 (1999), Eur. Phys. J. C 22(2001) and J.R.Batley *et al.* Phys. Lett. B 544(2002)] and at FNAL [A.Alavi-Harati et al. Phys Rev. Lett. 83(1999), Phys. Rev. D67(2003), Phys. Rev. LD70(2004), ERRATUM] the double ratio

$$(\Gamma(K_{L} \rightarrow \pi^{0} \pi^{0}) \Gamma(K_{S} \rightarrow \pi^{+} \pi^{-})) / (\Gamma(K_{S} \rightarrow \pi^{0} \pi^{0}) \Gamma(K_{L} \rightarrow \pi^{+} \pi^{-})) = |\eta_{00} / \eta_{+-}| \cong 1-6 \operatorname{Re}(\varepsilon'/\varepsilon)$$

was measured and found different from 1 giving $\text{Re}(\epsilon'/\epsilon) = (1.66 \pm 0.26) \times 10^{-3}$ different from 0 as implied by the CKM picture.

The Kaon saga after more than 40 years of accurate measurements is not ended.

c..... (1-5 σ plots)New Physics accessible from Charm if CPV?

• 2007 BABAR & BELLE: Charm mixing $inD^{\circ} \overline{D^{\circ}}$ decay

and b...

From b experiments is coming the confirmation and the triumph of CKM.

Thanks to the measurements of the CP asymmetries and rare b decays, mainly at e⁺ e⁻ Bfactories PEPII and KEKB but also at FNAL Tevatron

(2006 B_s oscillations from CDF and D0 The mixing parameter $x(B_s) = \Delta M(B_s) / \Gamma(B_s) \cong 25$ and no evidence for $\Delta \Gamma(B_s) \neq 0$.

 $CDF: \Delta M(B_s) = (1.17 \pm 0.01) \times 10^{-2} eV - (17.77 \pm 0.12) ps^{-1}$ D0: $\Delta M(B_s) = (1.25 \pm 0.13) \times 10^{-2} eV - (19 \pm 2) ps^{-1}$

The SM prediction is : $\Delta M(B_s) = (1.20^{+0.43}_{-0.10}) \times 10^{-2} eV - (18.3^{+6.5}_{-1.5}) ps^{-1}$

Great achievements on flavor from e+e- factories PEPII and KEKB

- 1. 2001 CP violation in B sector from Time dependent analysis
- 2. 2003 Discovery of new charm particles start a new spectroscopy season with D_{sJ}
- 3. 2004 Direct CP violation in B sector
- 4. 2006 Limits on MSSM parameters from $B \rightarrow \tau v$
- 5. 2008 η_b discovery

To new Physics:Constraints on CKM+ rare lepton decays

Precise measurements of CKM parameters in quark sector, challenging new physics can come from a wide spectrum of future projects (some approved, some close to approval, some....):

In Kaons there are projects for a next generation of experiments :

 $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ and $K^{0} \rightarrow \pi^{0} \nu \nu$

at CERN and at JPARC.

Dedicated experiments on μ -e LVF at PSI (running), at JPARC and FNAL in future. In b, c and τ : LHCb at CERN, BES upgrade, KEKB + SuperKEKB, Super c- τ at Novosibirsk and SuperB studying very rare processes in quark and lepton sectors.

Improving CKM precision

$K+ \rightarrow \pi + \nu \nu$ science (or) fiction

LFV in tau and muon decay

Standard Model allows LFV.In charged leptons it can occur in loops with expected low branching fractions. Es: expected Br $(\tau \rightarrow \mu \gamma) < O(10^{-40} \div 10^{-54})$

Observable lepton decays with FV will allow a clear indication of New Physics.Many New Physis models predict strong enhancement of violating decays of μ and τ . In many models measurable and even quite large τ BR [O(10⁻⁸)] are expected.

History of Lepton Flavor Violation Searches no tau

MEG: $\mu \rightarrow e\gamma$ search at PSI: sensitive to 10⁻¹³ BRs

Super flavor factory projects

Machine project	Cms Energy (GeV)	Mode	Polarization of e ⁻ beam >80%	Luminosity (cm ⁻² s ⁻¹)
			for $ au$	
Super c-τ BINP (Russia)	3.0÷4.5	Symmetric	Yes	1÷2 10 ³⁵
SuperKEKB (Japan)	10.58	Asymmetric	No	2÷8 10 ³⁵
Super <i>B</i> - Roma	10.58 4.0	Asymmetric	Yes	1÷4 10 ³⁶

SuperB is expected to integrate 75 ab⁻¹ in 5 years

SLAC Oct.27,2008

B Physics @ V(4S)		Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Charm m	iving and	CD
	тој	ab^{-1}) Super B (75 ab	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)	Chaim m	ixing and	
$\sin(2eta)~(J/\psiK^0)$	0.018	$0.005~(\dagger)$	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)	Mode	Observable $\Upsilon(4S)$) $\psi(3770)$
$\cos(2eta)~(J/\psi^{.}K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)		(75 ab	$^{-1}$) (300 fb ⁻¹)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)	$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2} = 3 \times 10^{-10}$	-5
$\cos(2eta)~(Dh^0)$	0.20	0.04					$u' = 7 \times 10^{-10}$	-4
$S(J/\psi,\pi^0)$	0.10	0.02	${\cal B}(B o au u)$	20%	4% (†)	$D^0 \rightarrow K^+ K^-$	$y = 5 \times 10^{-10}$	-4
$S(D^+D^-)$	0.20	0.03	${\cal B}(B o \mu u)$	visible	5%	$D^0 \rightarrow K^0_{\sigma} \pi^+ \pi^-$	$g_{CP} = 0 \times 10$ $x = 4.0 \times 10$	$)^{-4}$
$S(\phi K^{\circ})$	0.13	0.02 (*)	${\cal B}(B o D au u)$	10%	2%	D /HS# W	$u = 35 \times 10$	-4
$S(\eta K^{-})$	0.05	0.01 (*) 0.02 (*)					$ a/n = 3 \times 10^{-1}$	-2
$S(K^0 \pi^0)$	0.15	0.02 (*)	${\cal B}(B o ho\gamma)$	15%	3% (†)		$ q/p = 5 \times 10$	
$S(\mu K^0)$	0.15	0.02 (*)	${\cal B}(B o \omega \gamma)$	30%	5%	$\psi(3770) \rightarrow D^0 \overline{D}^0$	$\psi = 2$ x^2	$(1-2) \times 10^{-1}$
$S(t_0 K^0)$	0.12	0.02 (*)	$A_{CP}(B ightarrow K^* \gamma)$	$0.007(\dagger)$	$0.004 (\dagger *)$	$\psi(3110) \rightarrow D^{-}D^{-}D^{-}$	J.	$(1-2) \times 10^{-3}$
()0123)	0.110	5152 (1)	$A_{CP}(B ightarrow ho \gamma)$	~ 0.20	0.05		y	$(1-2) \times 10$
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	$0.004(\dagger)$		cos o	(0.01 - 0.02)
$\gamma \ (B \to DK, D \to \text{suppressed states})$	$\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)	Charm E	CNC	
$\gamma \ (B \to DK, D \to { m multibody states})$	$\sim9^{\circ}$	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02(*)	Charm 1		Sensitivity
$\gamma \; (B o DK, ext{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10	$D^0 \rightarrow a^+a^ D$	0+	1 \(10-8)
						$D \rightarrow e^+ e^-, D$	$\rightarrow \mu^+ \mu^-$	1 X 10
$lpha \; (B o \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%	$D^0 \to \pi^0 e^+ e^-,$	$D^0 \to \pi^0 \mu^+ \mu^-$	2×10^{-8}
$\alpha \ (B o ho ho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%	$D^0 \rightarrow ne^+e^-, l$	$D^0 \rightarrow n \mu^+ \mu^-$	3×10^{-8}
$\alpha \ (B \to \rho \pi)$	~ 12°	2°	$A^{FB}(B o X_s \ell \ell) s_0$	35%	5%	$D_{1} = -\frac{1}{2}$	- יורי רי דאר ערוי -	010-8
r (combined)	$\sim 6^{\circ}$	1-2" (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%	$D^{\circ} \rightarrow K_{s}^{\circ} e^{+} e^{-},$	$D^{\circ} \to K_{s}^{\circ} \mu^{+} \mu^{-}$	3×10^{-5}
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^0_s\pi^{\mp})$	20°	5°	${\cal B}(B o \pi u ar u)$	-	possible	$D^+ \rightarrow \pi^+ e^+ e^-$	$, D^+ o \pi^+ \mu^+ \mu^-$	1×10^{-8}
		_						
						$D^0 ightarrow e^\pm \mu^\mp$		$1 imes 10^{-8}$
τ Physics	C.	naitivity	Physics (a)	V(5S) =		$D^+ \rightarrow \pi^+ e^{\pm} u^{\mp}$		1×10^{-8}
s	be.		$J_{\rm s}$ involution	$(33)_{ab^{-1}}$	Error with 30 ab^{-1}	$D \rightarrow \pi e \mu$		
$\mathcal{R}(\pi \rightarrow \mu \alpha)$	<u> </u>	× 10 ⁻⁹	ΔΓ	$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$	$D^0 o \pi^0 e^{\perp} \mu^+$		2×10^{-8}
$\mathcal{B}(\gamma \to \mu \gamma)$	27	X IU	Г	$0.07 \ {\rm ps}^{-1}$	$0.01 \ {\rm ps}^{-1}$	$D^0 o \eta e^{\pm} \mu^{\mp}$		$3 imes 10^{-8}$
$\mathcal{B}(\tau \to c \alpha)$	2.	v 10−9	β_s from angular analysis	20°	8°	$D^0 \setminus k^0 e^{\pm} u^{\mp}$		$3 \sim 10^{-8}$
$D(I \rightarrow e^{-1})$	<u> </u>	× 10	As	0.006	0.004	$D \rightarrow \Pi_s e^- \mu^+$		0 × 10
$\mathcal{B}(\tau \rightarrow \mu \mu \mu)$	2 \	√ 10 ⁻¹⁰	Ach	0.004	0.004			
$D(r \rightarrow \mu \mu \mu)$	<u> </u>	~ 10	$\mathcal{B}(R \rightarrow u^+ u^-)$	-	$< 8 \times 10^{-9}$	$D^+ \rightarrow \pi^- e^+ e^+$	$D^+ \to K^- e^+ e^+$	1×10^{-8}
$\mathcal{B}(\tau \rightarrow eee)$	2 \	√ 10 ⁻¹⁰	$U(D_s / \mu \mu)$	0.08		$D^+ \rightarrow \pi^- u^+ u^+$	$D^+ \rightarrow K^- u^+ u$	1×10^{-8}
$\mathcal{D}(1 \rightarrow ccc)$	<u> </u>	N 10	$ \mathbf{v}_{td}/\mathbf{v}_{ts} $	0.00	707	$D \rightarrow \pi \mu \mu$	$, D \rightarrow R \mu \mu$, I A 10
$\mathcal{B}(au o \mu \eta)$	4 >	$\times 10^{-10}$	$\mathcal{B}(\mathcal{D}_s \to \gamma \gamma)$ \mathcal{B}_s from $J/\psi \phi$	3870 10°	170 3°	$D^+ \to \pi^- e^\pm \mu^+$	$, D^+ \to K^- e^\pm \mu^\pm$	$+ 1 \times 10^{-8}$
	_	10	β_{\circ} from $B_{\circ} \to K^0 \bar{K}^0$	 24°	- 11°			
${\cal B}(au o e\eta)$	6	$\times 10^{-10}$ $^{-10}$	~ 5 0 III II 5 · II II	<u> </u>				47
17 I/	~	10 10	Marcello	A Giorgi	L	•		17
${\cal B}(au o \ell K^0_s)$	2 >	$\times 10^{-10}$		A. Olugi				

High Luminosity potential

- Flavour precision measurements sensitive to New Physics (NP)
 - Measure interference effect in known processes
 - Measure decays: rare or forbidden in Standard Model
- NP effects governed by
 - New Physics Scale NP(Λ)
 - Effective coupling C
 - Different Intensities (from interactions)
 - Different Patterns (for instance from simmetries)

"pictorially": oldsessoon

With 7-10x1010 pair bb, cc, $\tau\tau$ (75-100 ab⁻¹) it is possible

NP(Λ) found at LHC

- Determine couplings FV e CPV of NP
- Look for heavier states
- Study the flavour structure of NP

NP(Λ) not found at LHC

- Look for indirect signals of NP
- Link them to explaining NP models
- Constrain regions in parameter space with
 - $NP(\Lambda)$ sensitivity up several tens of TeV.

Some channels as $\tau~$ LFV clear segnals of NP

SLAC Oct.27,2008

COMPLEMENTARY: LHC and Flavour with 75 ab⁻¹

Determination of coupling [in this case : $(\delta_{13})_{LL}$] with 10 ab⁻¹ and 75 ab⁻¹

Importance of having very large sample >75ab⁻¹

SLAC Oct.27,2008

Some comparison: Current \rightarrow 10ab⁻¹ \rightarrow 75ab⁻¹

SLAC Oct.27,2008

Charm

• Charm events at threshold are very clean: pure DD, no additional fragmentation

- High signal/bkg ratio: optimal for decays with neutrinos.
- Quantum Coherence: new and alternative CP violation measurement wrt to Υ(4S). Unique opportunity to measure D⁰-D⁰ relative phase.
- Increased statistics is not an advantage running at threshold: cross-section 3x wrt 10GeV but luminosity 10x smaller.
- SuperB lumi at 4 GeV = 10^{35} cm⁻²s⁻¹ produces ~ 10^9 DD pairs per month of running. (using Cleo-c cross-section measurement [$\sigma(e^+e^- \rightarrow D^0D^0) \sim 3.6$ nb]+[$\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.8$ nb] ~ 6.4 nb)
- Time-dependent measurements at 4 GeV **only** possible at SuperB to extract Phase .

Time dependent measurements at DD threshold: only possible at SuperB

- Proper time resolution dominated by decay vertex resolution.
 - Production vertex precisely determined thanks to nm beamspot dimensions

is also a τ factory \rightarrow golden measurement LFV (Complementarity with $\mu \rightarrow e \gamma$)

Optimization of BKG rejection is in progress. Pol. Helps also to discriminate models. In some model there is a strong effect on the angular distribution of µ from signal:

LINE JULY 10,4000

26

Comparison with Snowmass points on Tau

SuperB with 75 using also Polarization

ah_1 evaluation	1a	250	100	-100	10	> 0
<i>uo 1, cvananton</i>		200	100			
assuming the	1b	400	200	0	30	> 0
most	2	300	1450	0	10	> 0
conservative	3	400	90	0	10	> 0
scenario about	4	300	400	0	50	> 0
syst. errors	5	300	150	-1000	5	> 0

NP predictions for experimentally constrained SUSY in a number of standard scenarios
 B.C.Allanach *et al.*, hep-ph/0202233

I EV	Snowmass points predictions						Super <i>B</i>		
	1a	1 b	2	3	4	5	90% UL	- 5 σ disc	SuperB
$BF(\tau \to \mu \gamma) \times 10^{-9}$	4.2	7.9	0.18	0.26	97	0.019	1÷2	5	
$BF(\tau \rightarrow 3\mu) \times 10^{-12}$	9.4	18	0.41	0.59	220	0.043	200	880	

SuperKEKB worse by a factor 2.5 and 4.5 in $\tau \rightarrow \mu\gamma$ and >5 in $\tau \rightarrow 3\mu$

LNF^SHaly 16;2608²⁰⁰⁸

Tau g-2

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$ Start with the expt. with μ assume SuperB at 75 fb⁻¹, $80\% e^-$ beam polarization

extend to all tau decay channels

combine 2 measurement methods for $Re\{F_2\}$

studies on simulated events show no limiting syst. effects

	Snowmass points predictions						Super <i>B</i>
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	<1

SuperKEKB, without beam polarization, expected worse by factor \approx 10, and worse systematics

Make use of all the informations (total x-section, angular distribution, f-b asymmetry. Measure Re and Im parts

LNF^SJuly 16;2008

Luminosity

For gaussian bunches:

$$\mathcal{L} = f_{\text{coll.}} \times \frac{N_{e^+} N_{e^-}}{4\pi \sigma_x \sigma_y} \times R_{\text{becometrical}}_{\text{Reduction}}$$

- $N_{e}{}^{+}$ ($N_{e}{}^{-}$) is the number of positrons (electrons) in a bunch
- f_{coll} is the collision frequency

 $\sigma_x(\sigma_y)$ is the horizontal (vertical) r.m.s. size at the I.P.

 R_1 is the Luminosity Reduction factor by incomplete overlap: crossing angle and "hour glass" effect.

•**TRADITIONAL** (brute force): increase the numerator Currents increase: from 1A on 2 A up to 4.1 A on 9.4 A- **Wall Plug Power**, HOM,CSR: hard to surpass 5 10^{35} cm²s⁻¹ **Crab** <u>Crossing</u> to increase **R**₁ and to optimize beam dynamic

•Super*B*: decrease the denominator (same currents as PEP-II) Bunch sizes: from $\sigma_y = 3\mu m$ down to $\sigma_y = 40$ nm Luminosity: 10^{36} cm²s⁻¹ (baseline). Crab <u>Waist</u> and large Piwinsky angle to optimize beam dynamic

Crab Waist : The SuperB solution

- Crab waist: modulation of the y-waist position, particles collides a same β_y realized with a sextupole upstream the IP.
- Minimization of nonlinear terms in the beam-beam interaction: reduced emittance growth, suppression of betatron and sincro-betatron coupling
- Maximization of the bunch-bunch overlap: luminosity gain
- Low wall power

SuperB and Super c-τ are based on the crabwaist concept invented in 2006 by P.Raimondi in 2006.

TESTED IIN LNF WITH DAFNE (500 MeV beams)

Layout of Novosibirsk Project based on Crab Waist Concept From the talk by Anton Bogomyagkoy

SLAC Oct.27,2008

SuperKEKB project

SuperKEKB

Machine Parameters of SuperKEKB

	symbol	LER	HER	unit
Beam Energy	E	3.5	8.0	GeV
Beam current	1	9.4	4.1	Α
Circumference	С	30	16	m
Number of bunches	n _o	50	18	
Number of particles	N/bunch	11.8	5.1	x1010
Emittance	εχ	9	Ð	nm
Emittance ratio	ε _{γ/} ε _χ	0.5		%
Beta (hor.) at IP	β _x *	200		mm
Beta (ver.) at IP	β _γ *	3		mm
Bunch length	σ	3		mm
Crossing angle	θ,*	30 to 0		mrad
Beam-Beam (hor.)	ξx	0.36		
Beam-Beam (ver.)	ξ _γ	0.43		
RF AC plug power	P _{AC}	73		MW
Luminosity	L	8	.0	x10 ³⁵ cm ⁻² s ⁻¹

Marcello A. Giorgi

z

Luminosity stable above 2.0x10³² reached

Dafne test (Luminosity)

SLAC Oct.2

Asymmetric bunch size to optimize beam lifetime (Touschek effect)

SuperB expected LUMI

After 7th year integrated Luminosity can grow at rate of ~40 ab⁻¹/year

SLAC Oct.27,2008

SLAC Oct.27,2008

LFV prediction by model

		τ→μγ	τ→III
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	10 ⁻⁵⁴ - 10 ⁻⁴⁰	10-14
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7
SM + heavy Maj $v_{\rm R}$	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9

Some predictions are already excluded by the present results.

Some can be tested soon by combined statistics of Babar and Belle

Sept 25,2008 Novosibirsk (Russia)