

TM and C Laurent de Brunhoff

...and the Search for New Physics

Nils Olav is a non-Standard Model Penguin

- He has just been knighted (arise Sir Nils Olav)
- There is a statue of him
- . He has a Wikipedia page

Main page

Contents

= Easturad contan

Help us improve Wikipedia by supporting it financially.

 article
 discussion
 edit this page
 history

Nils Olav

From Wikipedia, the free encyclopedia

Sir Nils Olav is a King Penguin living in Edinburgh Zoo, Scotland. He is the mascot and Colonel-in-Chief of the Norwegian King's Guard. Nils was visited by the Norwegian King's Guard on the 15 August 2008 and awarded a knighthood. The honour was approved by the king of Norway, King Harald V. During the ceremony a crowd of several hundred people joined the 130 guardsmen at the zoo to hear a citation from King Harald the Fifth of Norway read out, which described Nils as a penguin "in every way qualified to receive the honour and dignity of knighthood".^[1]

Finding Nils Olav is ... difficult!

- You have to study a lot of penguins
 - Thanks to PEP-II we have 423/fb of Y(4S) data
 - BaBar physics book was based on 30/fb (sometimes 300/fb)
- All (king) penguins look the same
 - The Standard Model explains everything
 - There is Minimal Flavour Violation
- What is the signature for Nils Olav?
 - A name tag? A radio collar?
 - Ask a zookeeper (theorist)

The first penguin $b \rightarrow s\gamma$ (b. 1993)

Branching Fraction

Before BaBar:Experiment $(3.15 \pm 0.54) \times 10^{-4}$ Theory $(3.28 \pm 0.33) \times 10^{-4}$

Now (82-210/fb):Experiment $(3.52\pm0.25)x10^{-4}$ Theory $(3.15\pm0.23)x10^{-4}$

Final analysis (423/fb): Experiment? (3.52±0.17)x10⁻⁴

Photon Energy Spectrum

Three different $b \rightarrow s\gamma$ analyses

Fully Inclusive γ (Lepton-tagged) Semi Inclusive $B \rightarrow X_{s} \gamma$ (Sum of Exclusive modes) Breco-tagged γ (reconstruct other B)

High backgrounds High efficiency Good energy resolution Missing final states? Low backgrounds Low efficiency

PRL 97, 171803 (2006)

PRD 72, 052004 (2005)

PRD-RC 77, 051103 (2008)

Constraints on New Physics from $b \rightarrow s\gamma$

> Two Higgs Doublet Model (2HDM)

- Tan β is ratio of doublet vacuum expectation values
- Charged Higgs boson $M_H > 300 GeV$

Supersymmetry (SUSY)

- "Impossible to obtain model-independent bounds on SUSY" (Wick & Altmannshofer 2008, arXiv: 0810.2874)
- Competition between H⁻, chargino, gluino contributions
- Non-Standard Model insertions δ_{LL} , δ_{LR} , δ_{RL} , δ_{RR} (next slide) (L = left-handed, R = right-handed, LR/RL change quark helicity)
- > Universal Extra Dimensions (UED)
 - Compactification radius 1/R > 300 GeV (Agashe, Deshpande, Wu 2001)

A rare penguin $b \rightarrow d\gamma$ (b. 2004) Exclusive decays with 423/fb

Assume isospin symmetry $\Gamma(B^+ \to \rho^+ \gamma) = 2\Gamma(B^0 \to \rho^0 \gamma) = 2\Gamma(B^0 \to \omega \gamma)$

Branching fraction $B \rightarrow (\rho/\omega)\gamma = (11.4 \pm 2.3)x10^{-7}$

arXiv:0808.1379 [hep-ex]; submitted to PRD

PRELIMINARY

Inclusive rate from sum of exclusive modes arXiv:0807.4975 [hep-ex]; submitted to PRL

$$\frac{\Gamma(b \to d\gamma)}{\Gamma(b \to s\gamma)} = 0.033 \pm 0.013 \pm 0.009$$

Radiative Penguins (C7)

Electroweak Penguins V-A (C9-C10)

Measure interference between diagrams as a function of di-lepton mass squared (s)

- > Branching fractions for Kll, K*ll and inclusive sll
- → K* longitudinal polarization F_L
- > Lepton forward-backward asymmetry A_{FB}
- > Lepton universality: $K(*)\mu\mu/K(*)ee = 1$?
- > Isospin asymmetry: $B^+/B^0 = 1?$

B→K(*)ll Branching Fractions

BaBar preliminary – ICHEP '08 (349 fb⁻¹)

 $B(B \to K^* \ell^+ \ell^-) = (11.1^{+1.9}_{-1.8} \pm 0.7) \times 10^{-7}$ $B(B \to K \ell^+ \ell^-) = (3.9 \pm 0.7 \pm 0.2) \times 10^{-7}$

BELLE preliminary – ICHEP '08 (625 fb⁻¹)

 $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.8^{+1.0}_{-1.0} \pm 0.9) \times 10^{-7}$ $\mathcal{B}(B \to K \ell^+ \ell^-) = (4.8^{+0.5}_{-0.4} \pm 0.3) \times 10^{-7}$ Consistent with theory. Next level of SM tests from rate asymmetries and angular information (as functions of $q^2 = s = m_{ll}^2$)

Angular and Rate Asymmetries in $B \rightarrow K(*)l^+l^-$

Charmless Hadronic B Decays

Many (~100) different decay modes! Mostly described by sum of T,P,C diagrams

Focus on $B \rightarrow K\pi$, $K\phi$, $K\eta'$ which are mainly described by gluonic penguins (P)

Predictions of QCD Factorization

100

100

125 150 175

125 150 175

"The first $K\pi$ Puzzle"

Possible inconsistency between B($K^0\pi^0$) and $B(\pi\pi)$ + other $B(K\pi)$?

New physics from electroweak penguins? (Fleischer, Gronau)

Beneke et al (2001)

 $[\]gamma = (76 \pm 20)^{\circ}$ from B \rightarrow DK (see talk by Yeche)

Direct CP Violation in $B \rightarrow K\pi$

BaBar made the first observation of A_{CP} in B decays (2004)

 $B^0 \rightarrow K^- \pi^+ \qquad B^0 \rightarrow K^+ \pi^-$

"The second $K\pi$ Puzzle"

$$A_{CP}(K^{0}\pi^{+})= 0.009\pm0.025$$

 $A_{CP}(K^{+}\pi^{0})= 0.050\pm0.025$ Should be
 $A_{CP}(K^{+}\pi^{-})=-0.097\pm0.012$ the same?
(HFAG 2008)

Belle finds a difference between direct CP violation in charged and neutral B meson decays (Nature, 2008)

で荷電B中間子と中性B中間子の崩壊で異なるCP 対称性の破れを観測

Time-dependent CP Violation in $B \rightarrow K_S \pi^0(\gamma)$

Browder, Gershon, Pirjol, Soni, Zupan arXiv:0802.3201 (Rev. Mod. Phys.)

> Is $\sin 2\beta^{\text{eff}}$ really less than $\sin 2\beta (J/\psi K_S)$ in b-s hadronic penguins?

Masiero (CKM 2008) – Correlations between New Physics observables

Source of CP Violation for Baryon Asymmetry of the Universe

George W.S. Hou (侯維恕) National Taiwan University

ICHEP 2008

arXiv:0810.3396

In Public: the big question BaBar has been addressing

In Private: CP violation in B/K decays does not account for the baryon asymmetry of universe (by $x10^{10}$)

... but it could if you add a t' quark (4th generation)

New physics in electroweak penguins

- \bullet Solves the two $K\pi$ puzzles
- Different Sin 2β in penguins
- Should see effects in $b \rightarrow sll$

>New physics in mixing diagrams

- Large phase ϕ_s in B_s mixing (Tevatron)
- Different Sin2 β in J/ ψ K_s ? (Soni, CKM 2008)
- Effects in D mixing?

The leptonic decay $B \rightarrow \tau \nu$ (b. 2006)

 ν_{τ}

 B^{-}

au

 π

 $\overline{
u}_{ au}$

 B^+

- Very challenging due to the presence of at least two neutrinos
- Reconstruct the other B in the event
 (B→D*lv or hadronic decays)
- Reconstruct observable tau daughters in a few decay modes (e, μ , π ...)
- Require nothing else in the event:

$$\mathcal{B}(B^- \to \tau^- \overline{\nu_\tau}) = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left(1 - \frac{m_\tau^2}{m_B^2}\right) f_B^2 |V_{ub}|^2 \tau_B$$

 $= (1.51 \pm 0.33) \times 10^{-4}$ Experiment (HFAG)

= $(1.39 \pm 0.44) \times 10^{-4}$ (Standard Model) > $f_B^{=}(189 \pm 27) \text{ GeV}$ from lattice QCD > $|V_{ub}| = (44.9 \pm 3.3) \times 10^{-4}$ inclusive b - ulv

= $(0.73 \pm 0.12) \times 10^{-4}$ (UT_{fit}) > No lattice input

> All CKM constraints apart from V_{ub}

The Charged Higgs Map

General Considerations NP search strategies $B_{s,d}^0 \rightarrow \mu^+ \mu^-$ MFV Q large tan β B-physics Phenomenology in MFV B-phy

The M_H -tan β plane

Better mass constraints than direct searches M_H>90GeV (LEP)

Lepton Flavour Violation in Tau Decays

An example of a search:

- Reconstruct the signal τ→ eγ decay and require the correct τ mass and energy
- In the rest of the event require the observable daughters of the other τ to be consistent with a known τ decay mode
- Account for backgrounds
 - $\tau \rightarrow ev\overline{v}$ decays
 - electromagnetic processes

Some other things that we didn't find...

- > The rare penguin decays B→ K(*) $v\bar{v}$ < 5 (12) x10⁻⁵
- > The leptonic decays B→ $\mu\nu$ (ev) < 1.3 (5.2) x10⁻⁶ > The leptonic decays B→ $\mu^+\mu^-$ (e⁺e⁻) < 5.2 (11.3) x10⁻⁸
- > The radiative decay $B \rightarrow \gamma \gamma$ < 1.7 x10⁻⁶
- > The lepton-flavour violating decays $\tau \rightarrow \mu\gamma (\mu\mu\mu) < 6.8 (5.3) \times 10^{-8}$
- > CP violation in D decays $\Delta Y < 1\%$

These upper limits are important for constraining new physics!

Summary & Conclusions

> No clear evidence for New Physics yet

>We found a lot of new penguins

they all fit the Standard Model
but there are a few puzzles

> We have pictures of Nils Olav

which give hints what to look for

> We have maps of where to look

given to us by the zookeepers
talk by Nir

> The search will continue

→ talk by Giorgi

