Advantages of X-ray Clusters

Can be well modeled
X-rays are optically thin thermal radiation from material nearly in collisional equilibrium
Not as simple as the microwave background
Simpler than supernovae, galaxies or AGN

Fewer projection effects with X-ray selection
X-rays are more peaked than galaxy distribution
Fewer foreground/background objects
Confining hot gas requires a real object of high mass

Close relation of X-ray observable to cluster mass
X-ray bright so seen to cosmological distances
Comparison of dark matter and x-ray cluster and group distribution

every bound system visible in the numerical simulation is detected in the x-ray band - bright regions are massive clusters, dimmer regions groups,
Dark Universe Observatory

Sensitivity to Dark Energy equation of state

Volume element

Comoving distance

\(-d\ln f/dw\)

\(-d\ln r/dw\)

\(d\ln H/dw\)

Huterer & Turner
Volume Element as a function of w

Into the darkness peering...

Dark Universe Observatory

Volume Element

$\frac{dV}{d\Omega} (\text{arbitrary units})$

Redshift

$\Omega_{m}=0.3; \Omega_{x}=0.7$

$w=-1$

$w=-0.7$

$E-deS:w=0$

Dark Energy \rightarrow More volume at moderate redshift
Cluster Evolution and Cosmology

- The observables are the x-ray luminosity, temperature correlation function and their evolution with z
- x-ray properties directly connect to mass (Allen 2002)

X-ray properties of clusters trace mass

Mass temperature relation

Horner et al 2001

Borgani and Guzzo 2001

Figure 7.4: X-ray Mass-Temperature Relation. Solid circles are clusters with kT.

Figure 450x240 to 724x534
Instrument Heritage

ABRIXAS and XMM

- DUO has a high degree of heritage
- 7 X-ray mirrors, focal length 1.6m
- Total field of view 3.3 sq. degs.
- Effective resolution 45 arcs.
- 7 PN-CCDs, 0.3 – 10 keV
The optical system

12 outer shell coated with nickel, the others with gold

all 27 shells coated with gold

Telescope A_{eff} [cm$^{-2}$] (1 telescope)

10°
New pn-CCD detector performance

Number of Events

0.28 keV

New pn-CCD

ADU
Dark Universe Observatory

Into the darkness peering...
Ball RS300 Spacecraft

- Telescope
- Winston Cone
- Contamination Cover
- Star Tracker
- Single-Axis Driven Solar Array
- Spacecraft Bus

On Orbit

Stowed in 63” Taurus Fairing
Observing Strategy (eff. > 60%)

DUO Wide Survey: 6000 deg²

- Within SDSS Northern Galactic Cap
- 8000 clusters with $M > 2 \times 10^{14} M_\odot$ (kT > 3.5 keV) complete to $z=0.7$
- Redshifts already available

DUO Deep Survey: 176 deg²

- 1800 clusters, about 200 at $z>1.0$
- Southern Sky (ping-pong operation)
- Synergy with large SZ-Surveys
- Optical follow-up from VLT

Operations: Scan both regions in 2 years
Dark Universe Observatory

Into the darkness peering...

Rosati, Borgani & Norman
ARAA 40, 539,
Redshift distributions

$N(>z) \propto 10^6$

$N(>z) \propto 10^5$

$N(>z) \propto 10^4$

$N(>z) \propto 10^3$

$N(>z) \propto 10^2$

$N(>z) \propto 10$

$N(>z) \propto 1$

$1+z$ vs. $N(>z)$ for AGN, Clusters, SDSS LRG’s.
Dark Universe Observatory

One Square Degree of Deep Survey

Into the darkness peering....
Discrimination of Clusters vs. Active Galactic Nuclei
Measurements of Dark Energy with DUO
Dark Universe Observatory

Into the darkness peering...

P(k)

Neutrinos

![Graph showing the power spectrum P(k) and other cosmological parameters.](Image)
Into the darkness peering...

Dark Universe Observatory

- Dark Energy: 73%
- Cold Dark Matter: 25%
- Atoms: 4%

Dark Matter
Hot Gas