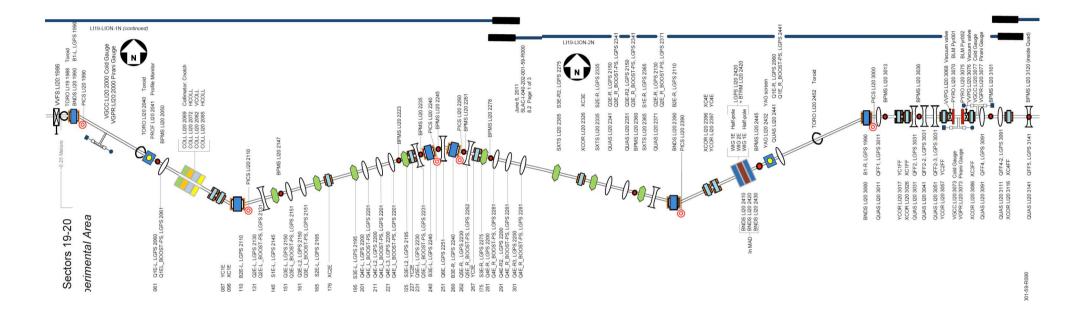


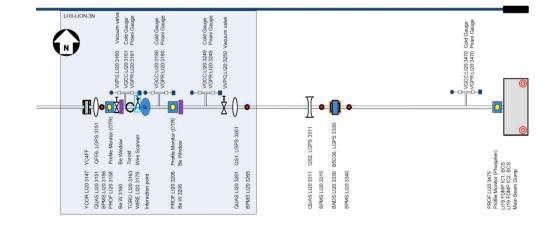
Progress on FACET Commissioning

U. Wienands

Director, Linac S0-20 Division

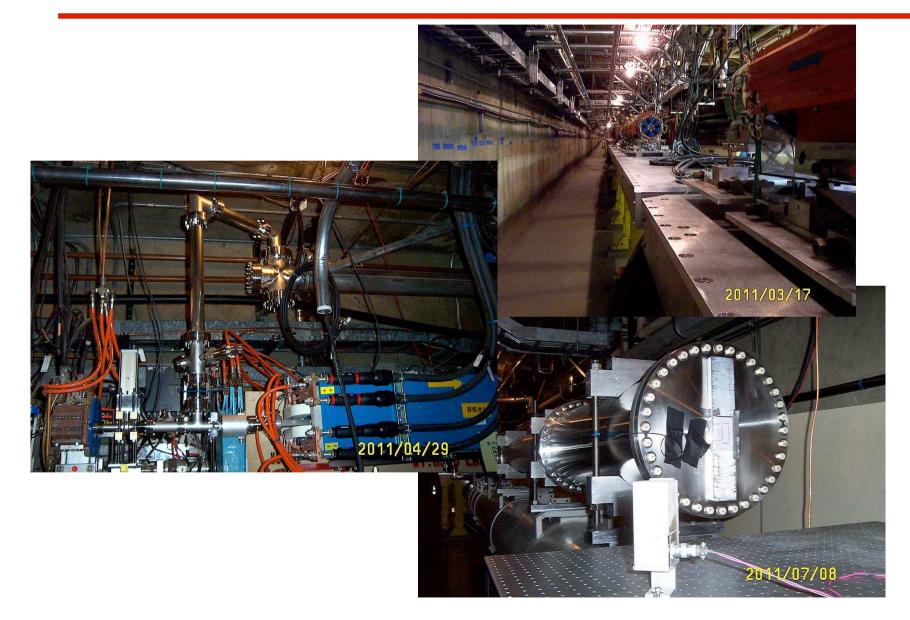
for the FACET Commissioning Team




- * Introduction to FACET
- * Hardware commissioning
- * Beam commissioning
- * Operational issues
- * FACET Commissioning Workshop
- * Plan ahead
- * Summary

FACET Beamline Map

FACET FACET Design Parameters



Energy	23 GeV
Charge per pulse	0.5 – 2.0 x 10 ¹⁰ <i>e</i> ⁻ or <i>e</i> ⁺
Pulse length at IP (σ_z)	15 – 40 μm
Typical spot size at IP ($\sigma_{x,y}$)	10 – 20 μm
Repetition rate	1 – 30 Hz
Momentum spread	4 – 0.5% full width
Momentum dispersion at IP (η and η ')	η < 10 ⁻⁵ m

FACET Installation

FACET FACET Hardware Commissioning

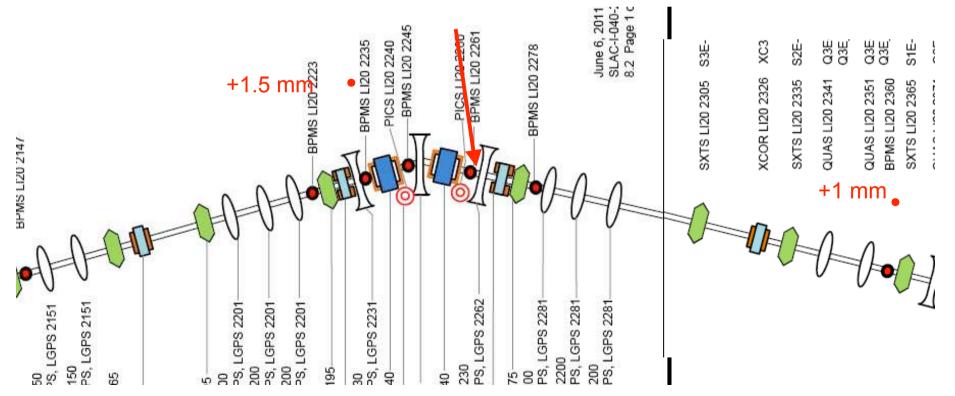
- * FACET Readiness Review on 6-May-11
 - most Action Items as expected
- Magnet power supply commissioning
 - verify configuration
 - check polarity
 - fix issues & retest
- * Controls Commissioning
 - run supplies through SCP
 - check vacuum controls
 - check diagnostics controls
- * Complete safety barriers
- * Complete ALARA shield wall at dump table

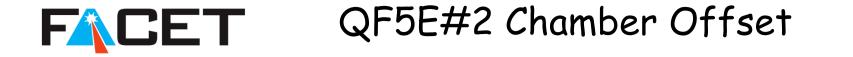
on FACET Dump

on Exit Window

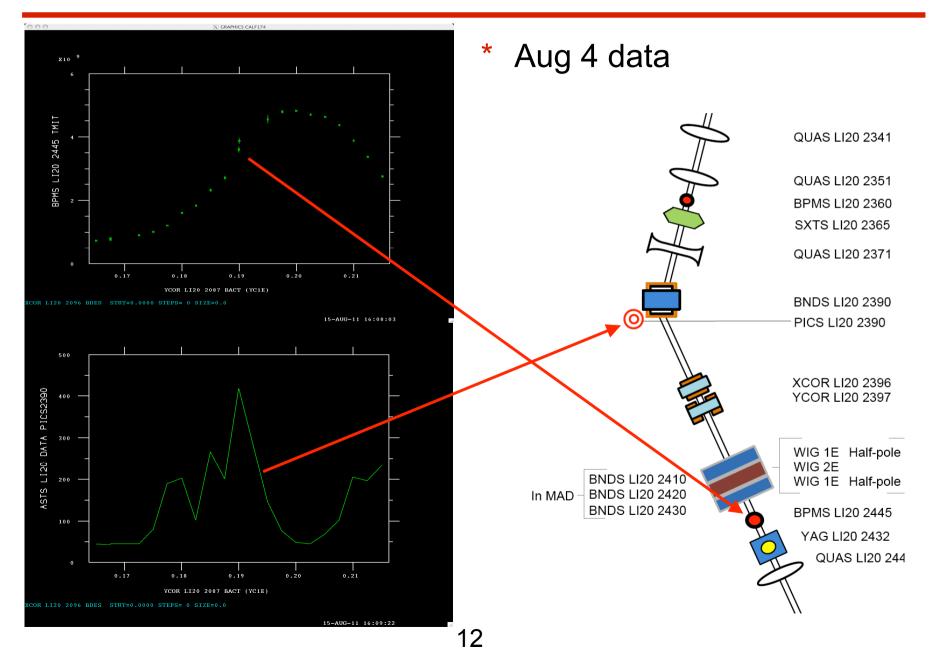
- * PS:
 - Breakers popped
 - B1,B2,B3 Zero flux transductors/bitbus ground loop
 - MCORs reversed voltage
 - all soon fixed (but a B3 mystery remains)
- * BPMs and Toroids
 - TMITs not consistent for BPMs
 - Toro TMIT seem ~25% low in comparison with linac toroids: 9-turn versus 13-turn?
 - Rotation, orientation, PCMM: fixed in 2nd week (or so
 - Missing two BPMS,
 - smaller than necessary beam pipe, misaligned beam pipe
 - much improved, but work remains
- * Moving Wire causes vacuum gauge glitch (fixed)

FACET Beam-Commissioning

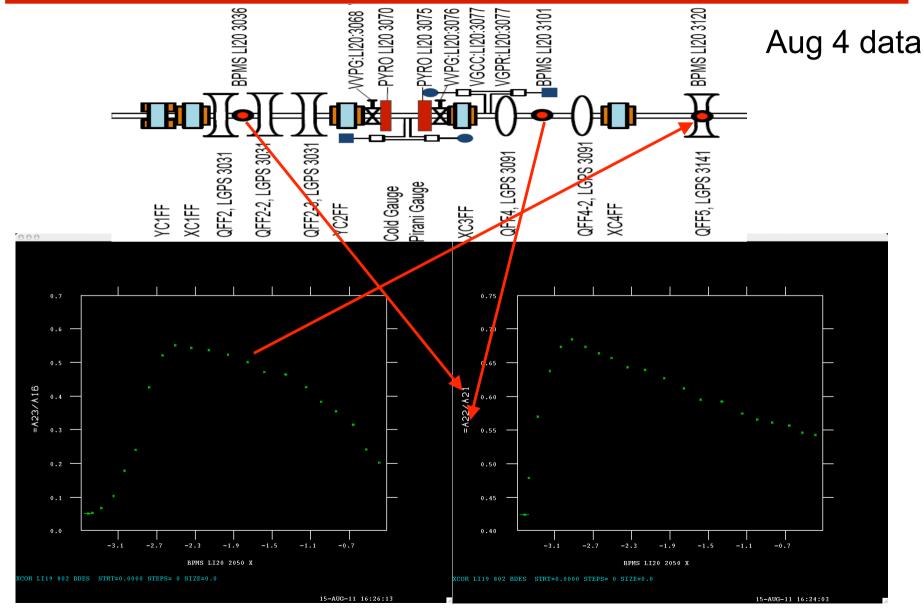



- * Beam to dump 23-June
 - immediately clear that dipole calibration was not accurate
 - also, relatively heavy beam loss, not easily tuned out.
- * "Relaxed lattice" with much less phase advance in *x*
 - allowed steering, aperture scans, reduction of beam loss
 - revealed serious aperture restriction near center of "W"
- * Survey of center of "W" found vac. chamber in Q5E-R dislocated by ≈1/2 inch (7-July).
 - supported properly => this restriction no longer present.
- Back to full-strength lattice
 - Some beam loss showed up again; getting about 90% through.
- * More work on dipole settings
 - PCD did find issues with the transductor electronics, fixed the BACT–BMON diff (28-July).

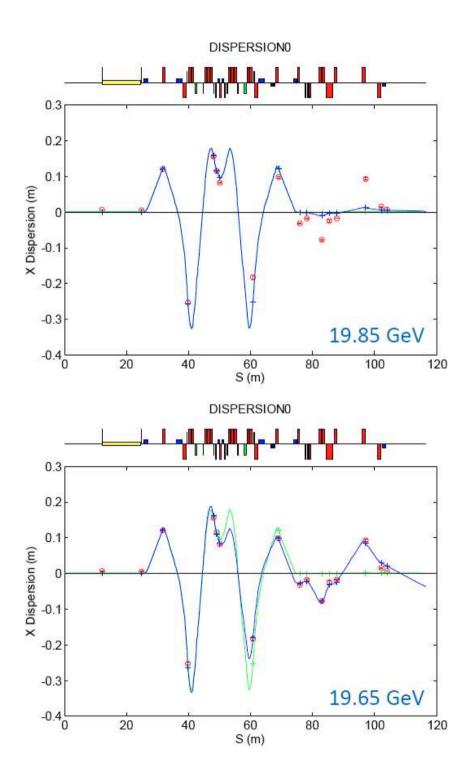
- Phase jump across center
 - XCOR 2326 strongly negative
 - again, "shoot beam across pipe"...?
 - but aperture on the + side (1 mm)... not consistent.
 - (xcor 2236 not scanned :-(

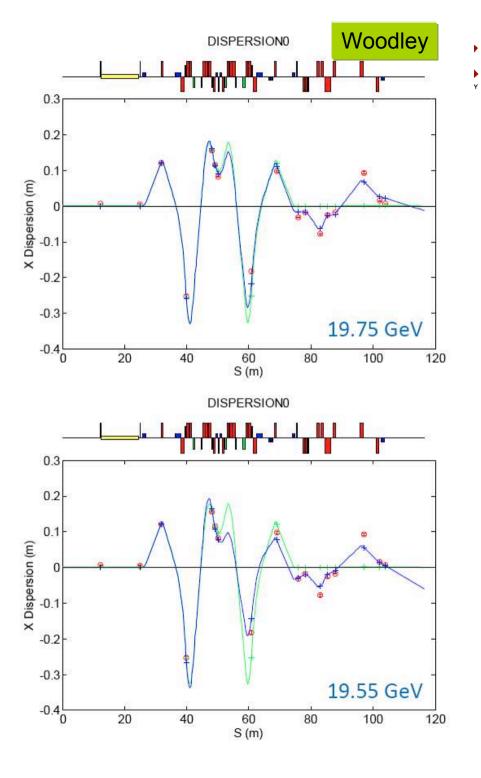


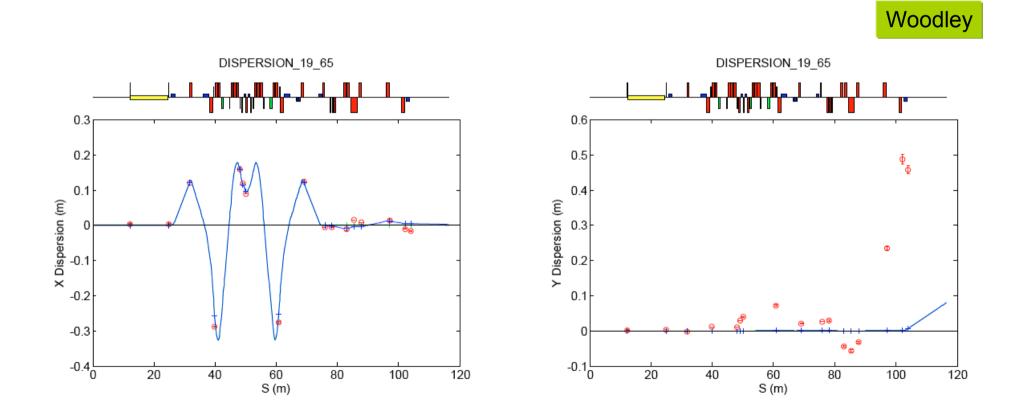
Vertical Aperture

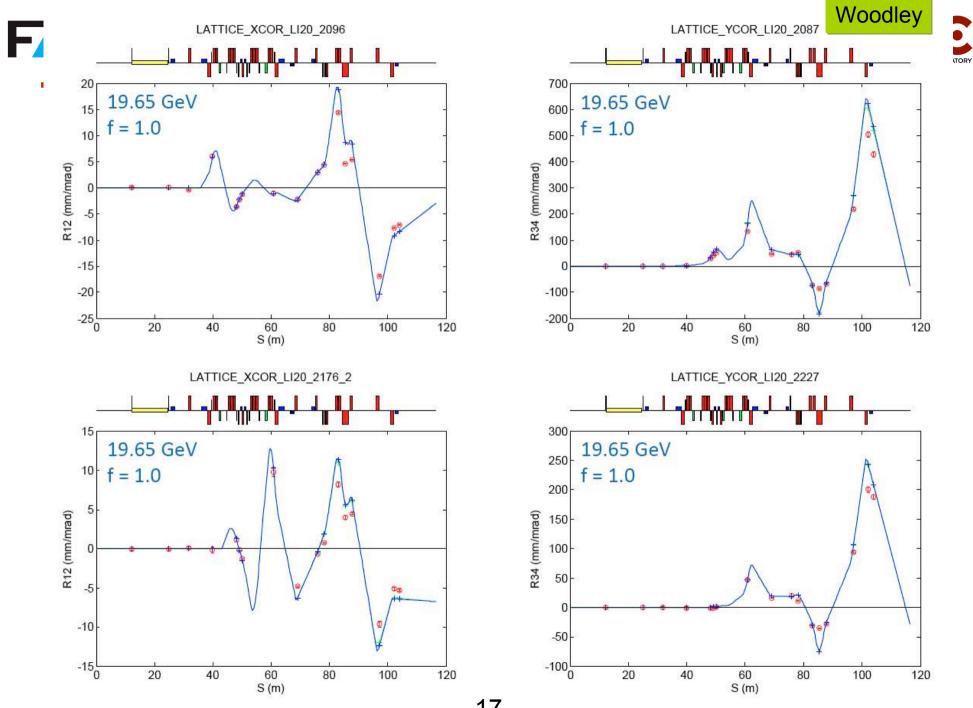


Energy aperture



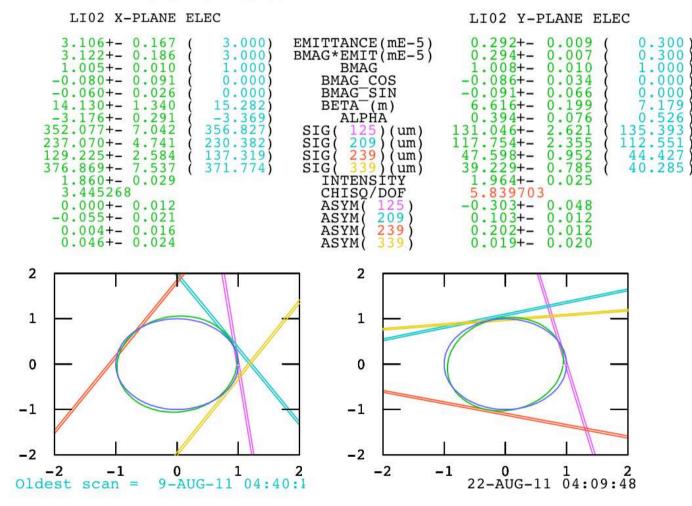



- * Response measurements were used to assess the state of the beam optics in the chicane
 - Dispersion: focusing but also the central energy
 - Results in general good agreement with the model prediction
 - Beam energy determined to be 19.65 GeV
 - Dispersion is quite sensitive to even small errors, and even small leakage (≈1 cm) is enough to significantly enlarge the beam size.
 - R_{12} : measures focusing
- * BBA is necessary to fully straighten out the beam path
 - The Chicane is challenging due to very strong focusing and not enough correctors or BPMs in the horizontal plane
 - Limits the number of quads/BPMs amenable to straight-forward BBA



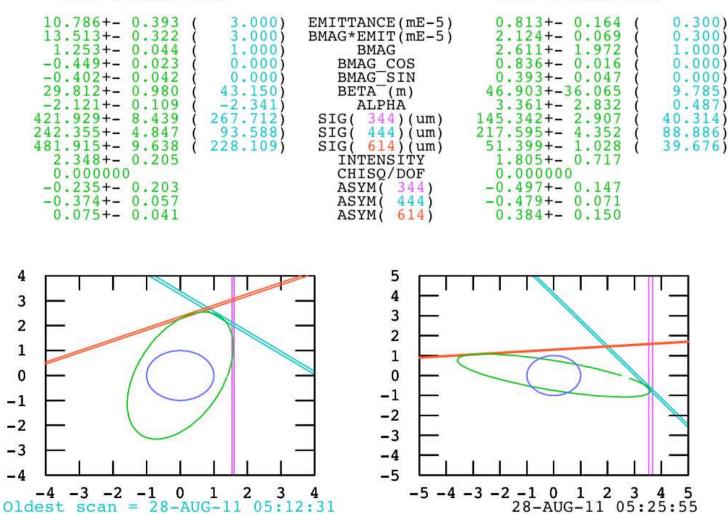
FICET Dispersion for adjusted Focusing

- * Note the rather large vertical dispersion.
 - Comparison to MAD results (Nosochkov) indicates S2E

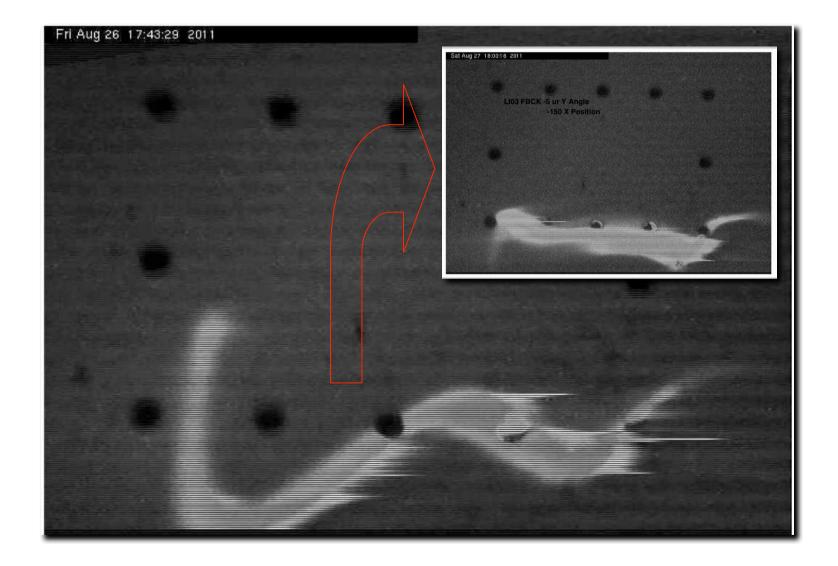

- * Re-commissioning of front-end and NDR
 - lots of hardware issues, but no show stoppers
 - largest time-sink was TIU problems
- Beam emittance initially quite large, significant tuning effort
 - fix correctors so local bumps actually work
 - match issue in S02 resolved.
 - nowadays we get 3 by 0.3 in S02 with little mismatch fairly routinely
- * S10 chicane recommissioned without much trouble
- * Linac emittance in S11 still relatively large
- * Linac beam into chicane not yet what we need

Sector 02 Emittance

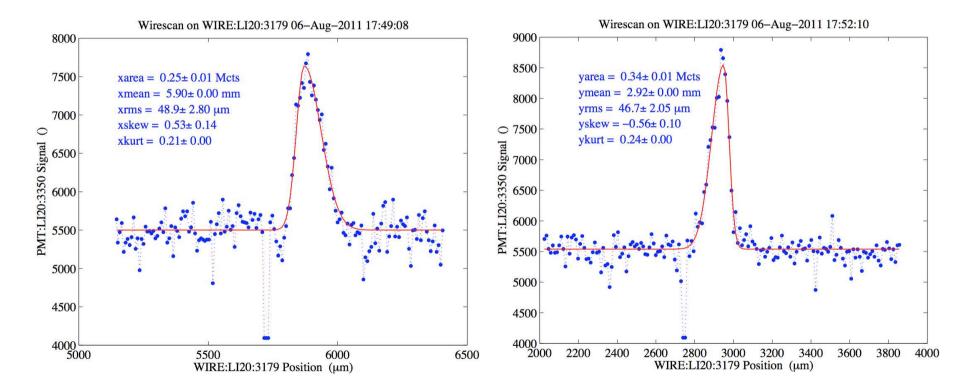
SLC 2-DIMENSIONAL PHASE SPACE ANALYSIS


Sector 11 Emittance Scan

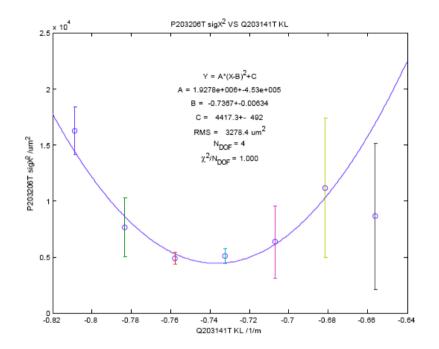
SLC 2-DIMENSIONAL PHASE SPACE ANALYSIS

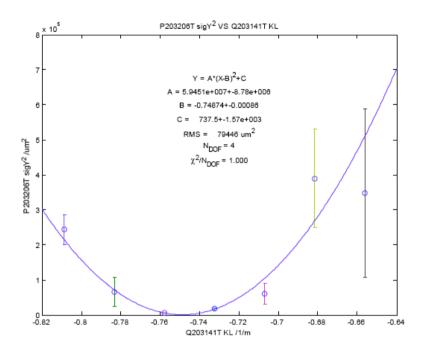

LI11 Y-PLANE ELEC

Beam Incoming (PMON)


FICET Understanding FACET Beam Sizes SLACE

- * Best emittance: \approx 7 by 1 µm-rad (meas in S11)
- * σ_{E/E}≈1% (SYAG, PR185)
- * $\eta_x \approx 0.015 \text{ m}; \ \eta_y \approx 0.015 \text{ m}$ (measured)
- * $[\beta_x \approx 0.03 \text{ m}; \beta_y \approx 0.3 \text{ m}$ (design)]
- * So the dispersive beamsize alone \approx 150 µm(!)
 - we have seen beamsizes considerably smaller than this
 - down to 30 by 32 μm @ IPWIRE
 - likely the tuning reduces the dispersion leakage (zero crossing)
- * Longitudinal
 - THz indicates bunch length may be near 65 µm.
 - E203 has little signal for 50 μ grating => bunch >> 17 μ m long
 - Wakeloss scans about 120 MeV: consistent with SppS data.





- * Note: the best ones were 30 µm by 32 µm
 - some inconsistency to nearby BPMs, but WS calibration checked with dial gauge => WS should be correct.

FICET Beam emittance in S20 (DSOTR) SLACE

asymmetric

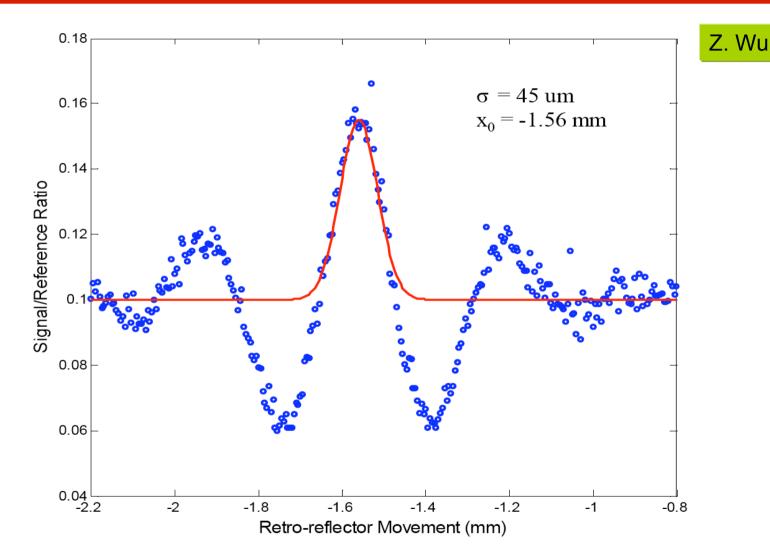
X emittance parameters at upstream end of Q203141T

THICK LENS

energy	=	19.650			GeV	
emit	=	1.323e-008	+-	1.465e-009	m	
emitn	=	5.088e-004	+-	5.635e-005	m	
emitn*bmag	=	2.550e-001	+-	4.949e-002	m	
bmag	=	501.094	+-	57.302		(1.000)
bmag_cos	=	-1.000	+-	0.000		(0.000)
bmag_sin	=	-0.010	+-	0.000		(0.000)
beta	=	23.594	+-	3.049	m	(875.749)
alpha	=	6.836	+-	0.925		(442.991)
chisq/N	=	1.000				
min(sig)	=	66.4			um	

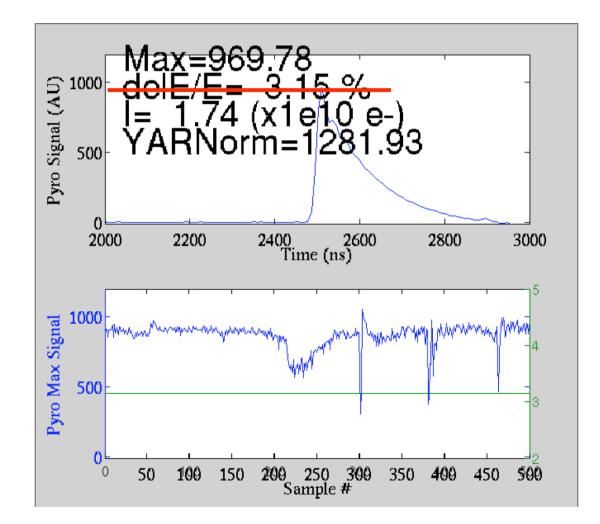
asymmetric

Y emittance parameters at upstream end of Q203141T

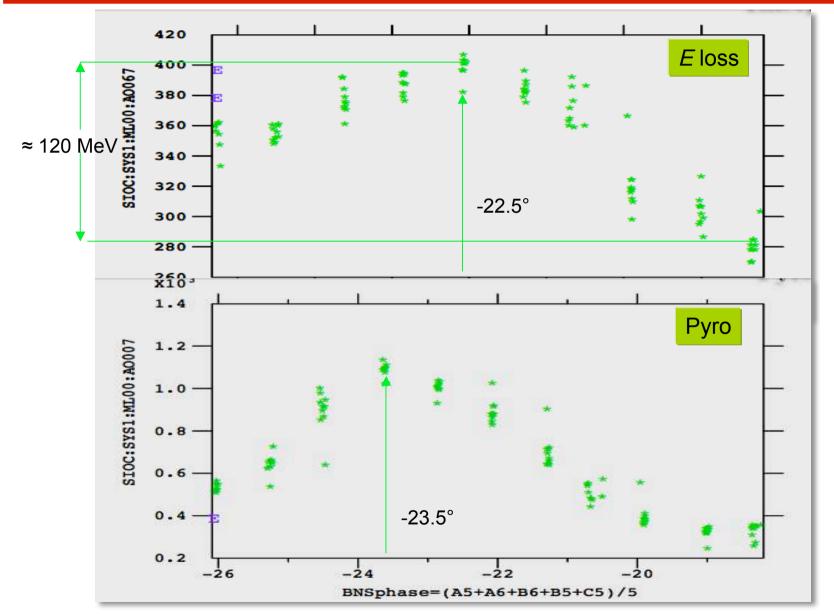

THICK LENS

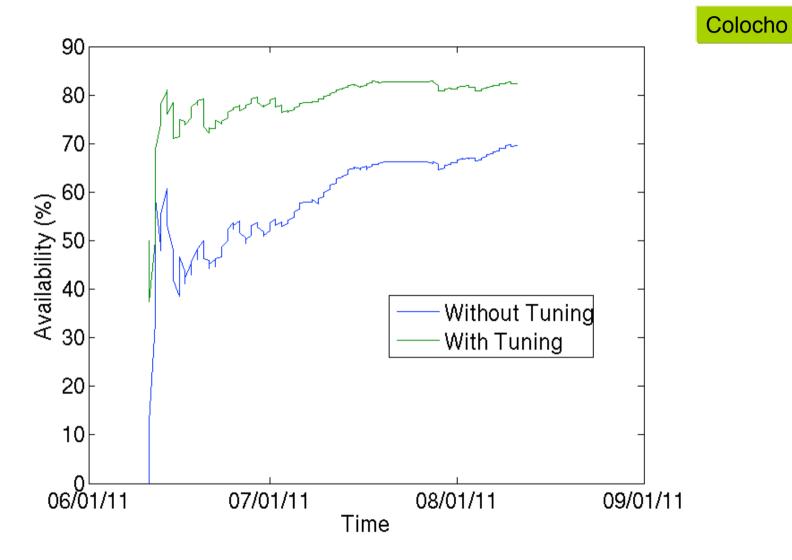
energy	=	19.650			GeV	
emit	=	2.659e-009	+-	3.253e-009	m	
emitn	=	1.022e-004	+-	1.251e-004	m	
emitn*bmag	=	4.196e-003	+-	7.290e-004	m	
bmag	=	41.047	+-	56.188		(1.000)
bmag_cos	=	-0.965	+-	0.000		(0.000)
bmag_sin	=	0.261	+-	0.000		(0.000)
beta	=	240.468	+-	326.489	m	(167.548)
alpha	=	-94.309	+-	127.861		(-73.175)
chisq/N	=	1.000				
min(sig)	=	27.2			um	

Michelson Interferometer


Electron bunch length $\sigma_z = 45$ um *2 / sqrt(2) = 63.6 um

Bunch Length Signals


* Pyro $\propto Q^2/I$, YARNorm = Pyro/ $Q^2 \propto 1/I$


Wake loss Scan

FCET

- * One (dedicated) operator/shift
 - initially mostly the ones with SLC experience,
 - now bringing in younger ones as well, cross training
 - during quieter times operate near LCLS => better integration
 - some EOIC's spend time @ FACET beyond their direct shifts
- * A set of SOPs is being generated (Schuh, Stanek, Yocky)
 - "Save-the-(FACET-)World" macro
 - Standard characterizations to be done at beginning of shift
 - Tuning & measurement procedures (e.g. wakeloss scan, front-end tuning, etc.)
 - Configurations for different experiments, knobs for waist shifts

FACET Commissioning "mini Workshop"

- * On 16-Aug, we used a 3-day exp. installation period to take a step back & look at what we have achieved & where we are going => half-day "mini workshop"
 - Open workshop
 - Invited guests not usually much involved in FACET commissioning
 - Emma, Seeman, Raubenheimer, Safranek, Colby, England, Cai, Iverson, Corbett, Frisch, Hast, Erickson, ...
 - Presentations, discussions, suggestions
 - Web site: https://slacspace.slac.stanford.edu/sites/s0-20facetcore/startup/FACET%20Commissioning%20Mini%20Work shop/default.aspx?InstanceID=1

Time	Title	Speaker	Duration
9:00	System and acticities overview	Wienands	0:15
9:15	Lattice work and BBA results	Woodley/Decker	0:20
9:35	Aperture scans	Wienands	0:15
9:50	Discussion	all	0:15
10:05	Front-end & DR tuning & performance	Yocky	0:15
10:20	Beam size tuning	Decker (Sheppard)	0:15
10:35	Compression tuning, e-loss scans	Yocky	0:15
10:50	Discussion	all	0:15
11:05	Diagnostics/Controls	tbd	0:15
11:20	Hardware issues	Sheppard	0:15
11:35	Operations report & uptime	Schuh/Stanek	0:15
11:50	Plan for the remaining commissioning time	Wienands	0:10
12:00	Discussion	all	0:30
12:30	Adjourn.		

- 50 Action Items
- A number of commissioning activities suggested:
 - "pencil beam" studies
 - "standard operating procedures"
 - Importance of 2nd- and higher-order aberrations
 - ways to study sextupole issues
 - more structured planning
 - look-ahead planning for downtime
 - •
 - •
 - •

FICET Beam Parameters Achieved to Date SLACE

achieved

Energy	23 GeV	19.65 GeV
Charge per pulse	0.5 – 2.0 x 10 ¹⁰ e ⁻ or e ⁺	2.0 x 10 ¹⁰ e ⁻
Bunch length at IP (σ_{z})	15 – 40 μm	≈65 µm (THz), wakeloss similar to FFTB
Typical spot size at IP ($\sigma_{x,y}$)	10 – 20 μm	>30-50 µm on IPWIRE
Repetition rate	1 – 30 Hz	10 Hz
Momentum spread	4 – 0.5%	3% fw PR185, SYAG
Momentum dispersion at IP $(\eta \text{ and } \eta')$	η < 10 ⁻⁵ m	η≥0.014 m

- I have asked to extend the commissioning run until 15-Sept.
 - I am optimistic this will come through
 - Focused on beam commissioning but will allow for some user time as well.
- * We operate under a "Rolling 7-day Plan" that facilitates planning without being unduly inflexible.
 - introduced after the mini workshop
- Beam commissioning will continue to focus on reducing the beam size in all dimensions:
 - Transverse: linac emittance, FACET "final focus", IP dispersion, 2nd- and higher order effects, diagnostics
 - Longitudinal: reliable and quantitiative bunch length measurement, linac tuning, vary R_{56} in chicane (?)

- Linac tuning for PMON image & FACET spot size interleaved with user shifts (present)
- * Low-energy spread "pencil beam" studies
 - discussed at mini workshop
 - requires setup time, incompatible with user shifts
 - expect to be in this mode for up-to 3 days
 - questionable whether e.g. IPWIRE can see this beam
- Sextupole effects study (coupling, aberrations)
 - compare with simulations
- * Reduce beam loss
 - activation is a real issue, potentially increasing cool-down time
 - already we attempt to minimize the charge going through FACET
- * BBA program not yet complete, esp. at center of "W"
- * Calibration of diagnostics (e.g. IPWIRE, OTRs)

- * Beam size: 25 by 25 µm or less (IPWIRE or OTR)
- * BLEN: ≥ 2000
- Calibrate BLEN/Q2 & wakeloss in µm (vs THz)
- * Resolve IPWIRE calibration issues

- * We will be down mid-September until ≈ mid February
 - Install Sector 10 e⁺ chicane
 - AIP Project now under L. Bentson's leadership
 - Ready e⁺ system
 - *e*⁺ source, PRL etc.
 - SDR
 - Work to begin Oct. 1st
 - Identified need for several improvements in the linac:
 - S19 wirescanner + quad supply to facilitate quad emittance scans
 - S11 bunch-length monitor
 - S02 bunch-length monitor
 - Various software upgrades
- * There was an expectation to upgrade the PPS for a dedicated S20 zone
 - Cost estimate came in @ M\$ 1.4... (not incl. dark-current stoppers)
 - Need to regroup & see how this can be done.
 - Actual impact less than might be thought
 - 1-hr cool-down will remain independent of this

- * FACET commissioning has been a challenging experience
- * The chicane optics we believe is mostly understood
 - dispersion, aberrations still need work
- We are "re-learning" how to minimize wakefield effects in the linac
 - will be continuing challenge
- * The frontend, incl. NDR, produce the required intensity & phase-space density
- As we continue making progress with beam sizes and halo, beam loss in the chicane will diminish
- * *e*⁺ next year will provide additional challenge

Thank You to all Involved in getting FACET off the Ground!

<u>FACET Construction Mgt. Team:</u> N. Phinney, J. Q. Chan, J. Sheppard, U. W.

Commissioning team: next page

FCET

- G. Yocky
- N. Lipkowitz
- F.-J. Decker
- J.C. Sheppard
- M.D. Woodley
- T. Smith
- W. Colocho
- S.P. Weathersby
- P. Schuh
- M. Stanek
- J. Nelson
- J. Turner
- H.V. Smith
- U. Wienands
- C. Clarke
- S. Kalsi

plus AARD-PWFA members:

- M. Hogan
- S. Li
- E. Adli
- S. Gessner
- J. Frederico