

# **Experience** with CESR **Operations**

M. Billing

For the 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+ e- Colliders

> October 13-16, 2003 Stanford, California



**Configuration of the Accelerators** 

CESR (4.7 - 5.6 GeV)

Functioning as a collider since 1979

**Installed a Mini-Beta Insert in 1981** 

Installed Pretzel with 3 trains of 1 bunch in 1982

**Installed a Micro-Beta Insert in 1986** 

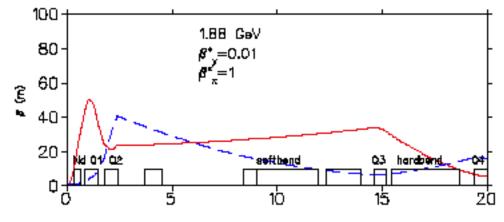
Initial operation with 7 trains of 1 bunch in 1987

**Operated with a Crossing Angle and 9 trains of bunches in 1994** 

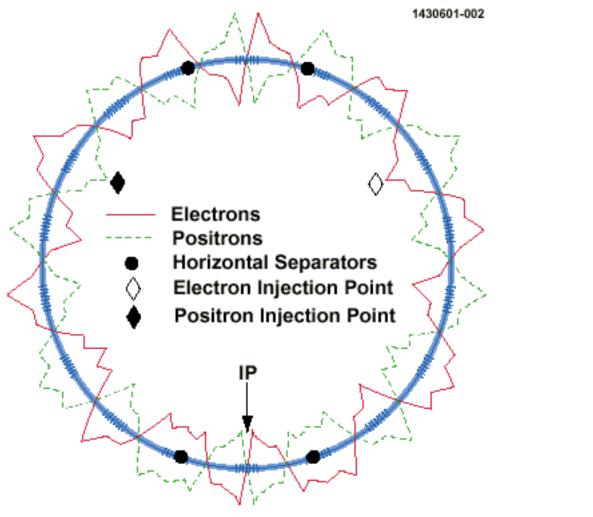
**Operation with 9 trains of 5 bunches in 2000** 

**Installed Super-conducting IR Quads in 2001** 

**CESR-C (1.88 GeV)** 


**Began initial operation in 2002** 

Installed first 6 Superconducting Wigglers for Summer 2003 Run


Will install Remaining Wigglers in Spring of 2004

#### **CESR-C Configuration**

SCIR: 2 PM & 4 SC Quads ± 3.5 mr Crossing Angle



**RF: 4 SC RF Cavities Bunch Distribution: 7or 8 trains of 3 or 4 bunches** 



### **Injector**

Linac (60Hz)

8 Accelerator sections

*=> 300 MeV electrons; max 30 bunches* 

**Positron target after 4 sections** 

=> 200 MeV positrons; max 16 bunches

Synchrotron (60Hz)

8 msec acceleration to CESR Energy

**CESR-C** Injection

*Top off e+ after dumping e- beam* 

Fill e- from 0 mA

## **Accelerator Operations**

**Control Room** 

**Designed for a Single Operator** 

Room for several accelerator physicists during MS

**Two Control Alcoves** 

Personnel

Operator Maintains Injector, Fills and Collides beams in CESR Oversees tunnel access and adherence to tunnel safety procedures

Director of Operations Oversees operations In charge of Accelerator Schedule Deployment of Support Personnel

Machine Studies Coordinator In charge of MS Scheduling of tasks

Accelerator Physicists Participate in Machine Studies typically weekly

#### **Details of Operations**

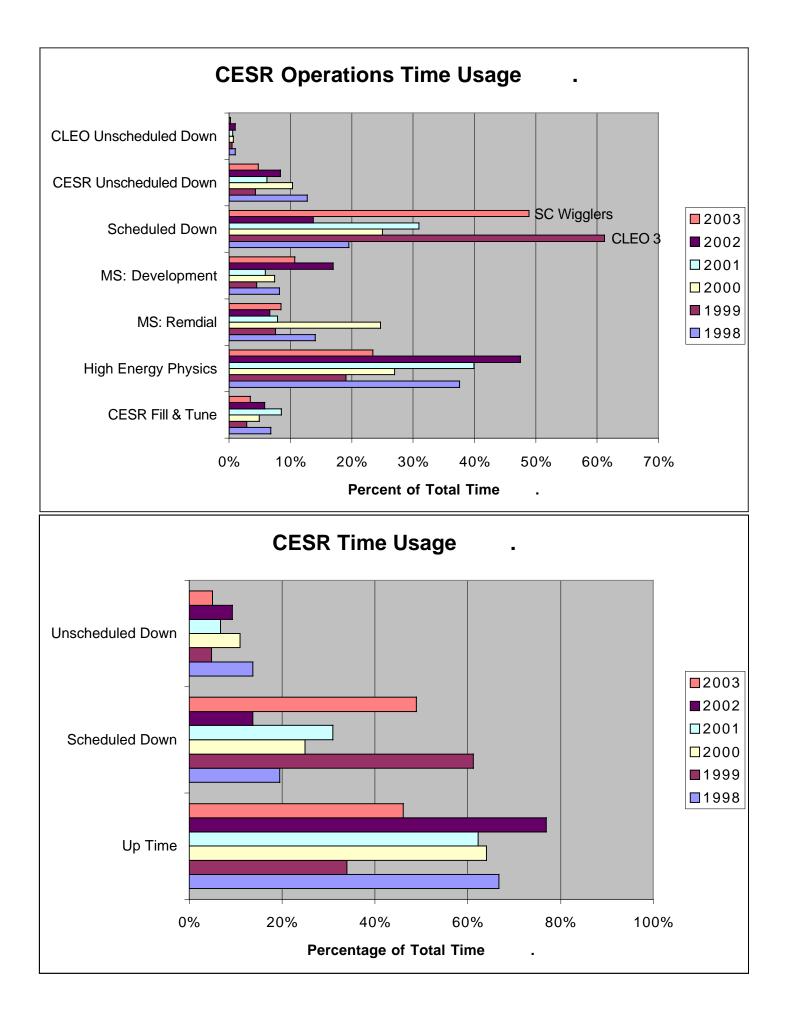
Fill-by-fill (Operator) Top off e+ Inject e-Collide beams - Start Run Make tuning adjustments as needed End Run - Scrape out e-

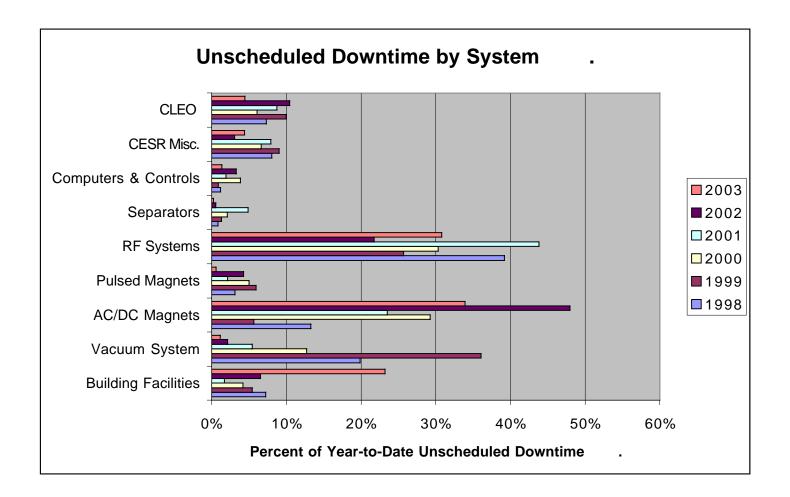
Weekly One shift of Tunnel Access 2-9 Shifts of MS Remainder is either HEP or Dedicated Synch Light

Running Periods (CESR-C) Combination of HEP (2/3) & X-ray Physics (1/3) 2-3 three week down periods / year Occasional long down periods for major upgrades

# Reliability

**Definition of Terms** 


**CESR Fill & Tune - Injection & Tuning after Colliding High Energy Physics - HEP Run Start to Stop MS: Remedial - Machine Studies to Correct Operating** 


Conditions

MS: Development - Machine Studies for Longer Range Projects

Scheduled Down - as stated CESR Unscheduled Down - Accelerator Downtime CLEO Unscheduled Down - Experimenter Downtime

Unscheduled Down Time: Building Facilities - includes power outages Vacuum Systems - all accelerator vacuum systems AC/DC Magnets - all accelerator guide, focusing, and transfer magnets Pulsed Magnets - injection & extraction magnets RF Systems - all RF systems Separators - H & V CESR separators Computers & Controls - includes software CESR Misc. - all else Cleo Unscheduled Down - for CLEO & CHESS





### **Recent History**

Magnet System Failures Major failure has been radiation damage to CESR quadrupole & skew quadrupole coils (being replaced)

RF System Failures CESR RF - poor welds in one ACCEL SRF cavity Linac RF - Klystron replacements

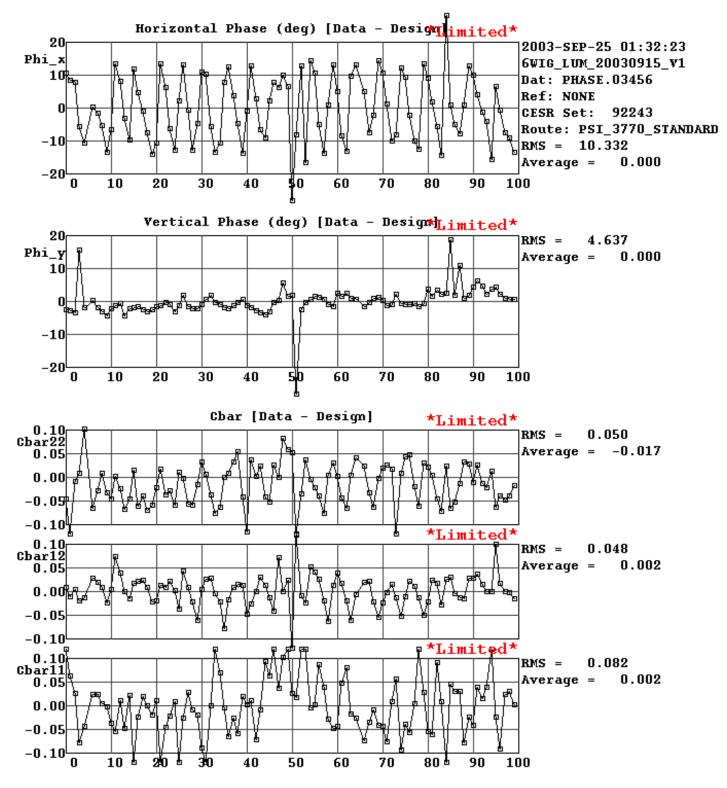
Vacuum System Leak in SR crotch during high current running

New SC Wigglers Doing very well **Diagnosing Faults & Fault Recovery** 

**Detecting Static Faults in Conditions** 

Weekly Characterization of CESR Conditions (1 hr) Tunes and Orbits in all conditions Phase, Coupling & Dispersion measurement Positions of SC IR Quads & Cryostats Worst magnet regulation errors (histograms) Whats\_wrong - output from diagnostic program

**Optics - Phase & Coupling Measurement - see below** 


Whats\_Wrong Simple program invoked to find obvious errors

Logged Data Data recorded once per minute

Hardware Testing Programs e.g. CESR Quadrupole current intercalibration or CESR RF phase balancing

CESRV

Software which models the accelerator e.g. Detecting the movement of SCIR positioning CAM (moves IR Quad locations transversely) Caused by power outage & a mechanical stop that slipped

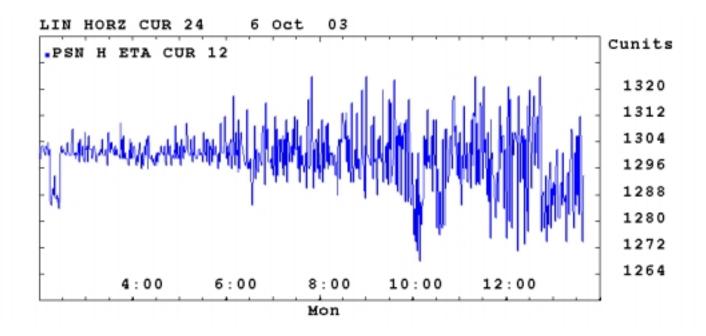


Betatron Phase Advance Error & Coupling Matrix Error

#### Auto Charactization (Including Whats\_wrong)

| 25-Sep-2003 01:05:10<br>Auto Characterization : [cesr.machmeas]auto_char<br>Shifter(s) map jac<br>************************************ |                                                                                                   |                                                                                                        |      |                |      |        |                     |      |     |                         |   |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|----------------|------|--------|---------------------|------|-----|-------------------------|---|
| Orb                                                                                                                                    | 0                                                                                                 | 02250                                                                                                  |      | 0              | 0    | 0      |                     | 0    | 0   | 0                       | 0 |
| *******                                                                                                                                | 0                                                                                                 | 0                                                                                                      |      | 0              | •    | •      | •                   | 0    | 0   | 0                       | 0 |
| IRQP IF<br>tune_ch<br>Chopstat<br><u>Time1</u><br><u>Hist1</u><br>Synch fr<br>E+ poscs<br>E+ poscs<br>E+ HEP<br>E+ HEP                 | <u>har</u><br><u>FFT1</u><br><u>Hist2</u><br>ceq (1 k<br>sr <u>pha</u><br>sr <u>eta</u><br>phase: | <u>FFT2</u><br><u>Time3</u><br><u>Hist3</u><br>punch),<br><u>se: 34</u><br><u>: 244</u><br><u>3456</u> | is   | 36.00 k        | Hz   |        |                     |      |     |                         |   |
|                                                                                                                                        |                                                                                                   | e+                                                                                                     | V+H  | Tun            | es   | Chroma | aticity             |      |     |                         |   |
| Set                                                                                                                                    | #                                                                                                 | ma                                                                                                     | seps | horz           | vert | Horz   | Vert                | butn | s G | lif                     |   |
| POSCSR<br>ELCSR<br>HEP                                                                                                                 | 92242                                                                                             | 4.66<br>4.58<br>4.42                                                                                   | off  | 197.2          |      | -1.1   | -1.3<br>-1.5<br>0.0 | 9419 | 0 0 | orbit<br>orbit<br>orbit |   |
| POSCSR<br>ELCSR                                                                                                                        |                                                                                                   | 3.62<br>3.56                                                                                           | on   | 201.7<br>205.7 |      | 0.2    | -1.3<br>-2.6        |      | 3 0 | orbit<br>orbit          |   |

orbit

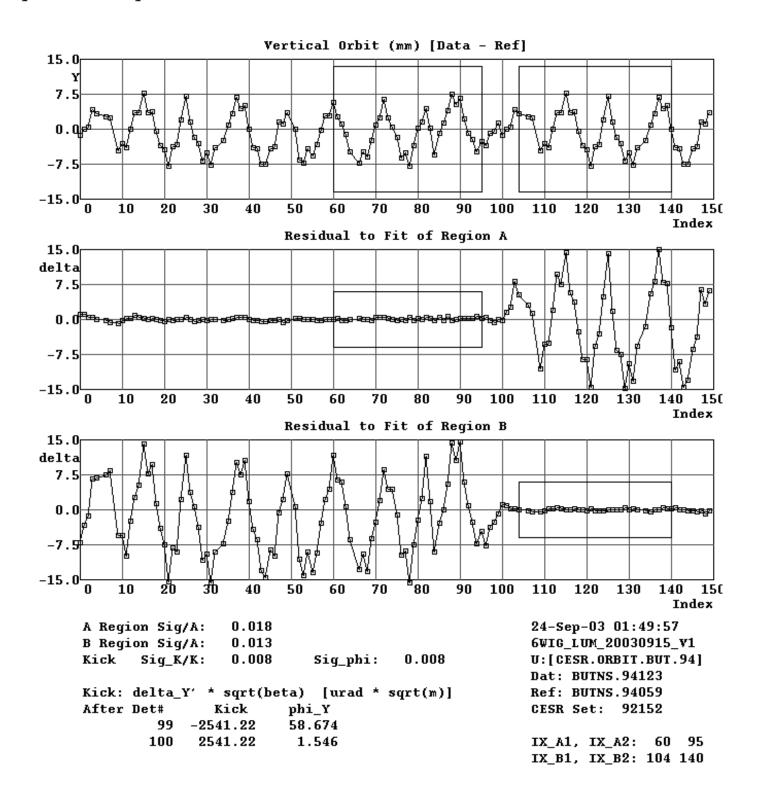

#### whats\_wrong

| CSR XFR TIME rep                                           | rate not at 60 hz. |                       |      |      |     |  |
|------------------------------------------------------------|--------------------|-----------------------|------|------|-----|--|
| - Problem with element Labelled >>>> BEAMKILL REPRATE <<<< |                    |                       |      |      |     |  |
| SCIR SKQUCUR 3                                             | SCIR SK QUAD 02E   | No Voltage to test    | -1.4 | 1229 |     |  |
| EXF SEPT CUR 3                                             | EXF PULSE SEPTUM   | No Readback to test   | 2047 | 433  |     |  |
| EXF BUMP HV 1                                              | E- BUMPER HV 26E   | Readback not equal to | old  | 160  | 136 |  |
| EXF BUMP HV 5                                              | E- BUMPER HV 36E   | Readback not equal to | old  | 135  | 118 |  |
| EXF BUMP HV 7                                              | E- BMP MASTER HV   | Readback not equal to | old  | 136  | 118 |  |

HEP 92243 3.46 on 207.0 237.5 -2.4 -0.8 94194

clr PCI semaphore # 60

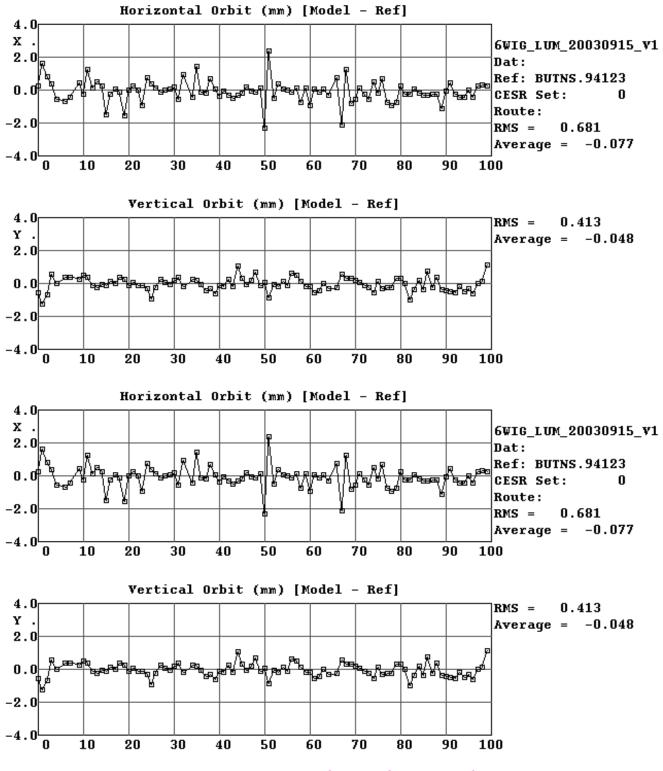
#### Winlog Data Plot




#### Plot of Positron Snout (Linac transport line) Bending Magnet current

Shows unstable behaviour

#### **CESRV** Orbit Fit


y wave analysis for 94123 - 94059



Free Betatron Wave Analysis Finds single dipole error in IR

#### Measurement of Orbit Error <u>Minus</u> Orbit from Motion of IR Cryostat Positioning CAM

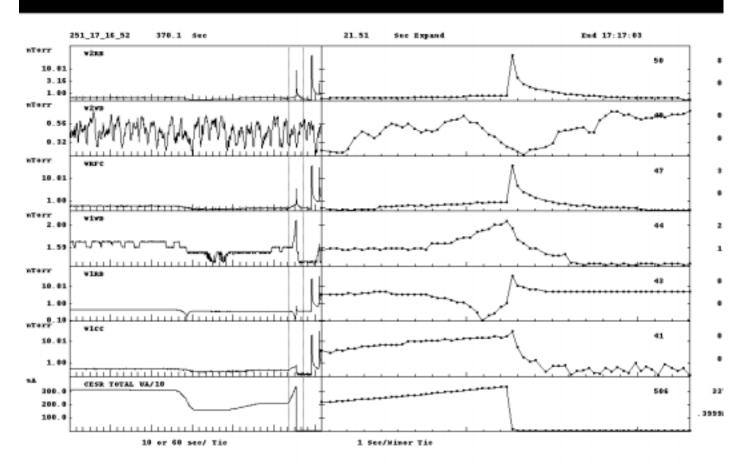
Difference between the measured orbit and one computed for a 706 um change in CAM 3 (on the West.)



Shows good agreement with diagnosis that 1 (of 10) CAM's slipped during a power outage

#### **Detecting Intermittent Faults or Single Events**

#### **Event Watch**


Program, which reads 100-200 predetermined elements at a 10 Hz rate Writes data to disk on a Trigger Trigger can be a person or some preset transition of one or more elements

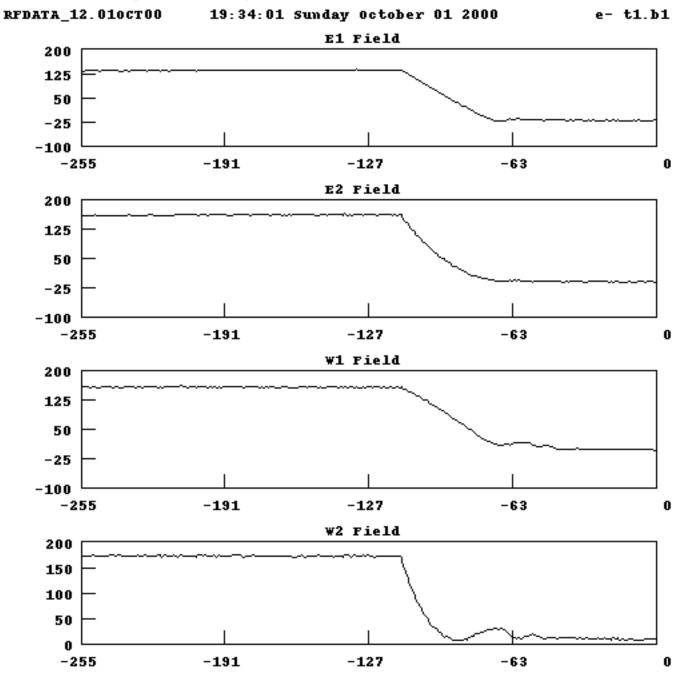
#### **Beamloss**

Program reads fast latching (1 usec) counters Counters tell which of ~ 20 signals tripped first -e.g. RF vacuum, RF Arc, Separator Trip, Beam Loss

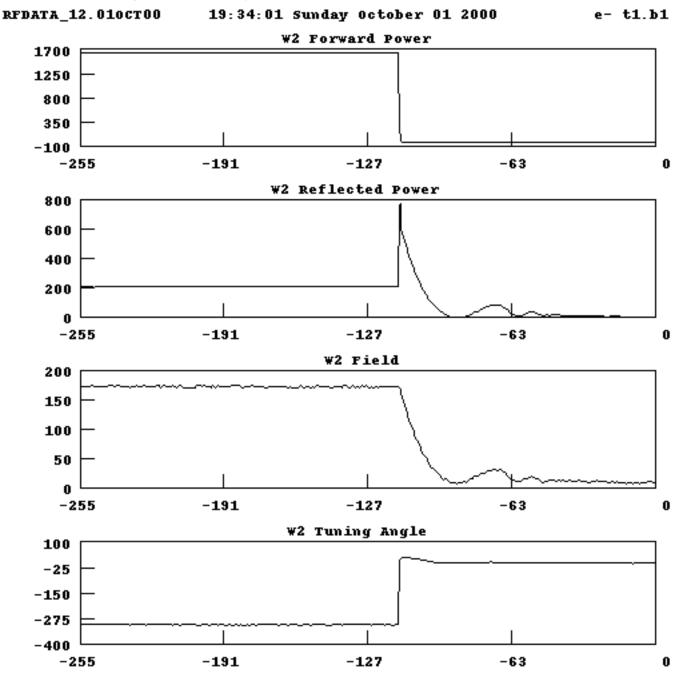
Comet Diagnostic System Multiple channels of fast digitizing (200 nsec) ADC's Record for 1 to several thousand turns Include: RF Forward & Reflected Power, RF Phase, X & Y Beam Positions, Beam Currents, Feedback System Forward Powers Records transient behavior before a beam loss

#### **Event Watch**

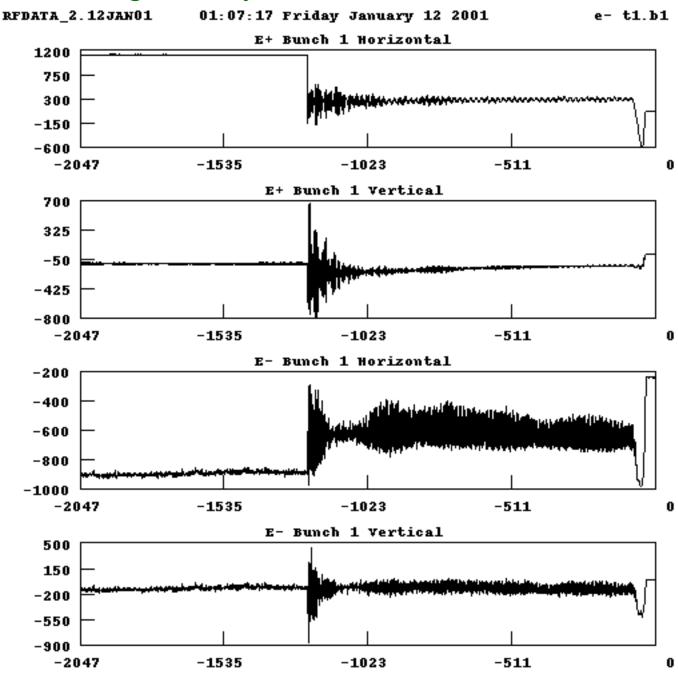



# Beam Trip caused by Vacuum Burst near SC RF cavity

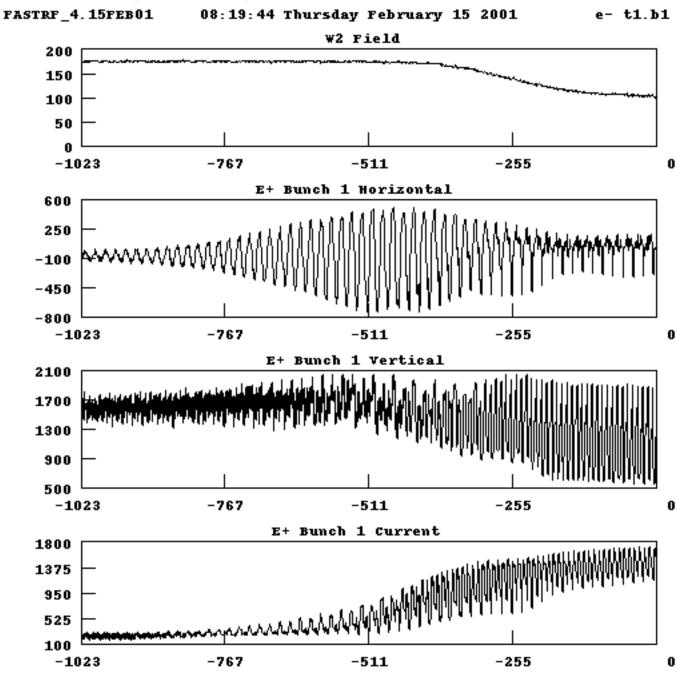
#### **Beamloss**


2003-10-09 10:19:09 Thursday, entry 7 Subject(s): Beam Loss Other Info: Witnesses: DJK CESR Fill Number 282.04 Beamloss Time: 10:16:28 9 Oct 2003 COMET File Number 4 DCCT: 373 -> 0 e+: 199 -> 0 e-: 179 -> 0 Beam Currents: CESR Conditions: ELCSR (before), ELCSR (after) 153 minutes left in run EGGLOG (10:16:54) says W1 QUENCH DETEC Beam Motion: H rms Vrms fh fv amp fs amp amp 3 17 e+ \_ -\_ \_ \_ \_ 2 6.4 18.8 4 \_ 230.8 1.2 e-\_

#### Semi-automatic entry into electronic logbook


Describes beam dump due to W1 RF Cavity Quench




W2 SC RF Field Tripped



Beam Dump - RF Turns Off & Beam spirals to hit inside of vacuum chamber Causes Beam Induced RF Power as seen in the Reflected Power Signal (no Quench)



Horizontal Separator Trip causing beam to become unstable horizontally



Positron beam became unstable longitudinally causing beam loss

## **Injecting Beams Into CESR**

Online Tools for Diagnosing Poor Injection Performance GOAL: Isolate the process where performance is poor

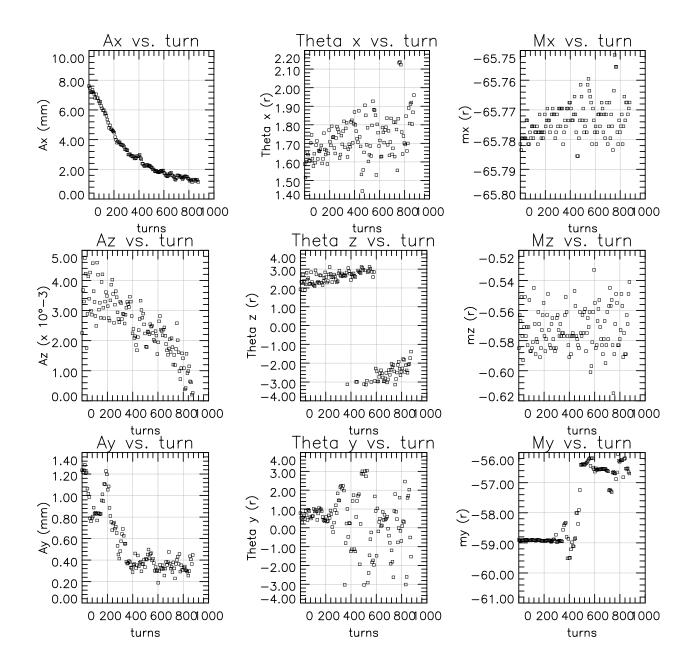
Scope Interface with coax multiplexed inputs Pulsed Injection Element Waveforms quickly displayed on Oscilloscope in Control Room

Online Displays to allow operator to tune Linac BPM's: x, y, intensity - many selectable displays (Synchrotron Beam is on dedicated scope) Total Synchrotron charge accelerated Capture rate and efficiency into CESR CESR Currents & Fill rate bunch-by-bunch & Total Current

Linac & Synchrotron Beams are tuned before being needed

#### **Tools for Remediation of Injection into CESR**

Position Monitor Viewed by Dedicated Oscilloscope Observe injected bunch(es) & dump beam at end of injection cycle or after 60 injection cycles Allows for larger tuning corrections


#### **Injection Procedure**

Online Document Step-by-step process, which correlates flags, signals or monitors with the appropriate control elements References programs or other useful tools

#### **Injection Trajectory Fitting**

Uses 1000 turns of BPM data for 1/10 of ring Can fit either injected or stored bunch Assumes design transport between BPM's (Ignores coupling) Allows tunes to be free parameters Fits a 42 turn window, moved in 7 turn steps Project amplitudes and phases back to injection point

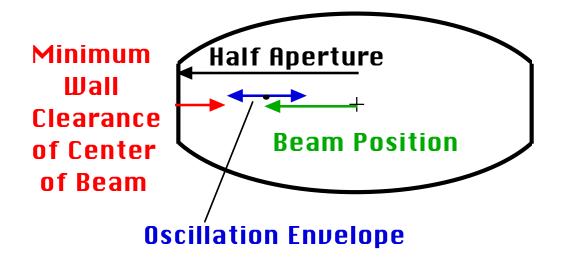
*=>* Amplitudes, phases and tunes in *x*, *y* and energy



Plots of fits of the injected beam trajectory

| Condition          | Amplitude                |                            |                                  |  |  |  |  |  |
|--------------------|--------------------------|----------------------------|----------------------------------|--|--|--|--|--|
| Condition          | Horizontal               | Vertical                   | Longitudinal                     |  |  |  |  |  |
| Injected Electrons |                          |                            |                                  |  |  |  |  |  |
| with Pulsed Bumper | $7.4 \pm 0.7 \text{ mm}$ | $1.3 \pm 0.1$ m m          | $4.7 \pm 0.2 \text{ x } 10^{-3}$ |  |  |  |  |  |
| and Pinger Magnets |                          |                            |                                  |  |  |  |  |  |
| Stored Electrons   |                          |                            |                                  |  |  |  |  |  |
| with Pulsed Bumper | $1.6 \pm 0.3$ mm         | $0.17 \pm 0.02 \text{ mm}$ | $0.1 \pm 0.1 \times 10^{-3}$     |  |  |  |  |  |
| Magnets            |                          |                            |                                  |  |  |  |  |  |
| Stored Electrons   |                          |                            |                                  |  |  |  |  |  |
| with Pulsed Pinger | $3.5 \pm 0.3$ mm         | $0.39 \pm 0.05 \text{ mm}$ | $0.2 \pm 0.1 \text{ x } 10^{-3}$ |  |  |  |  |  |
| Magnet             |                          |                            |                                  |  |  |  |  |  |

#### Results of Several Fits of Each type of Trajectory Amplitudes represent the Oscillation Amplitude present after pulsing the injection elements Reasonably consistent results (Errors are estimated)


# **Characterizing Optics for Injection**

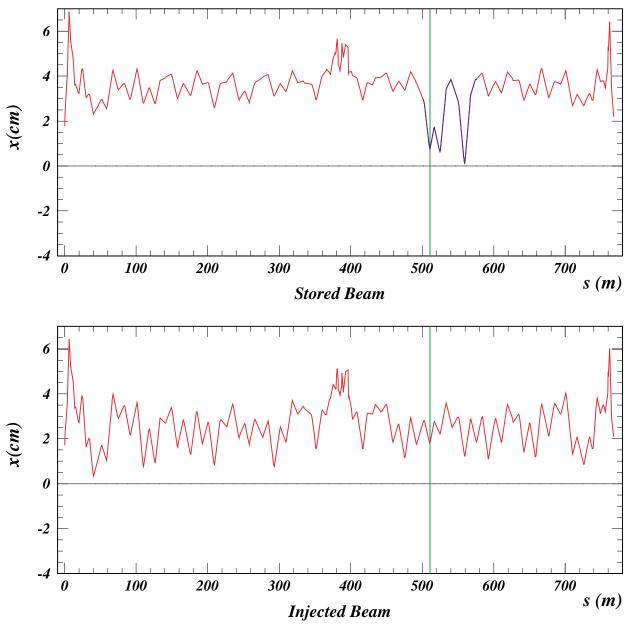
**Aside** 

Injection of e- against Stored e+ & Pretzels complicates the situation for CESR

=> New look at injection into CESR

- **Basic Analysis Strategy** 
  - **1. Examine only the Position of Center of the Beam**
  - 2. If beam undergoes oscillation from injection transient, then determine Amplitude of oscillation
  - 3. If both betatron & energy oscillations are present, determine each amplitude
  - 4. Assume that all phases of the oscillations will occur at every point in the ring before significant (radiation) damping occurs
  - => Project the oscillation amplitudes around ring & ADD them together => Oscillation Envelope

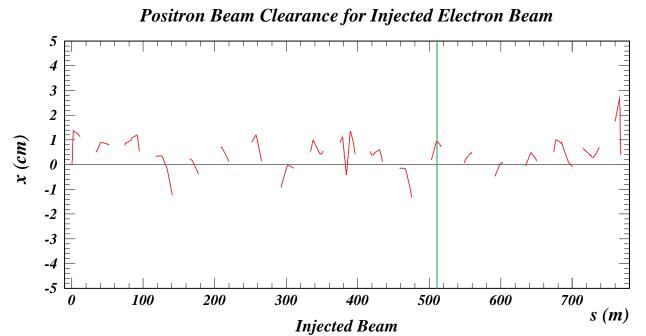



5. Determine any static or transient closed orbit distortion for stored beam or injected beam => Beam Position

Minimum Wall Clearance of Center of Beam = Half Aperture - Beam Position - Oscillation Amplitude

**Determine similar result for Clearance to Other Beam** 

If Clearances are positive, this is the space for the particles in the beam


Wall Clearances for Electrons

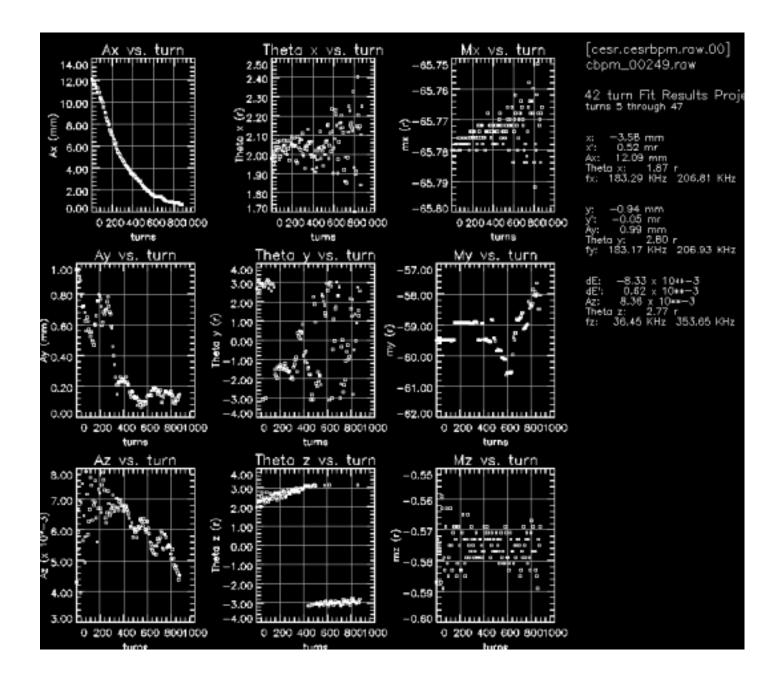


Wall clearances for Stored and Injected electron beams around CESR.

The section of the stored electron wall clearance plot, which is in blue, represents the reduced clearance due to the pulsed bump.

The vertical green line marks the injection point.




Clearance between the stored positron beam and the injected electrons.

- Plot shows only regions in the ring near the locations where the injected electrons encounter trains of positrons bunches.
- Plot shows that, UNLESS something else is done, the Injected Electrons will Pass through the core of the Stored Positron beam

Real Result: Preceding Example modeled a real set of conditions Conditions did not inject to very high currents Conditions required H-V coupling to inject at all

=> Raise Pretzel separation => Injected electrons barely clear core of positron beam

**Conclusion so far :** Conditions with more designed wall clearance inject better than those with less



**Injection Trajectory Fits**