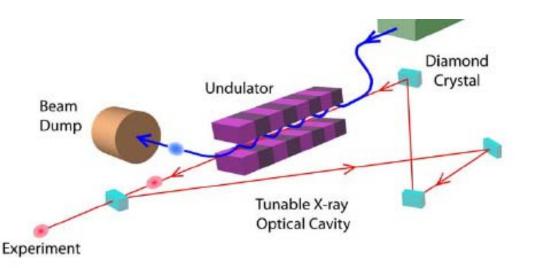


An X-Ray FEL Oscillator: Introduction

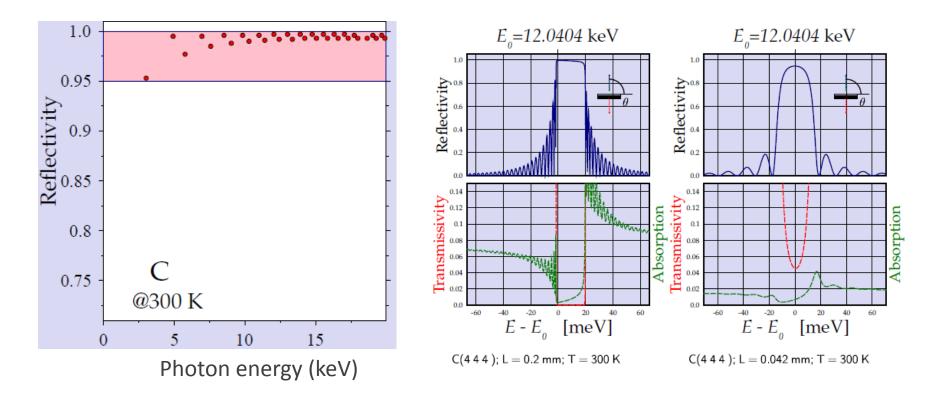
Kwang-Je Kim Argonne National Laboratory

Future Light Source WS 2010: FEL WG


March 1-5, 2010

SLAC National Accelerator Lab Menlo Park, CA

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No, DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

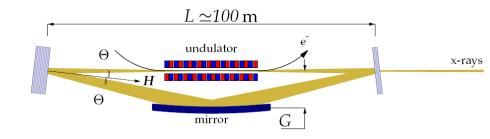

Hard X-Ray FEL Oscillator

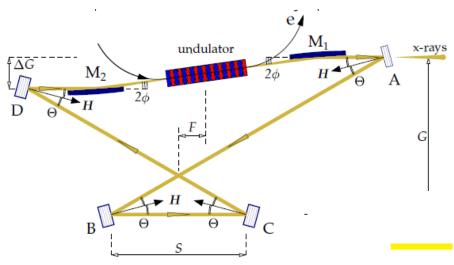
- Store an X-ray pulse in a Bragg cavity \rightarrow multi-pass gain & spectral cleaning
- Provide meV bandwidth ($\Delta\omega/\omega \sim 10^{-7}$)
- MHz pulse repetition rate \rightarrow high average brightness

Originally proposed in 1984 by Collela and Luccio and resurrected in 2008 (KJK, S. Reiche, Y. Shvyd'ko, PRL 100, 244802 (2008)

Diamond backscattering : High reflectivity and narrow bandwidth

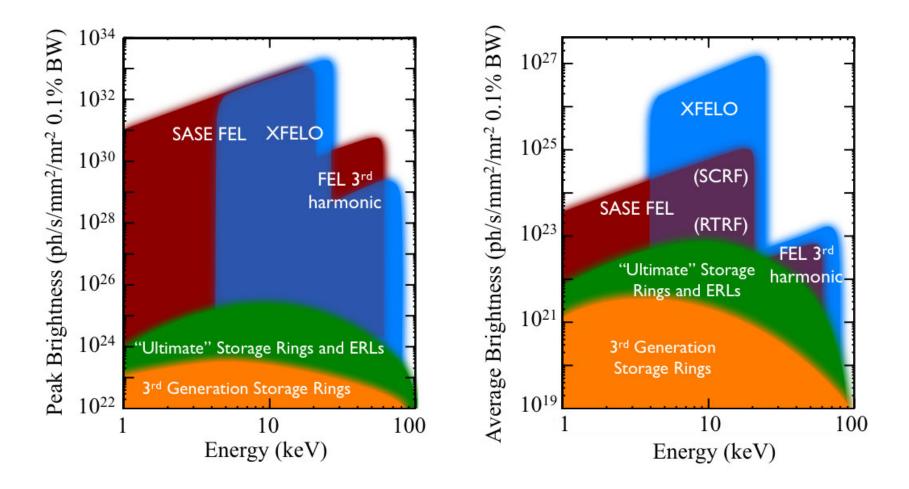
Courtesy of Yuri Shvyd'ko


KJK FLS 2010 March 1-5, 2010


Tunable X-ray Cavity

- Two crystal scheme
 - a very limited tuning since θ
 must be kept small

A tunable four crystal scheme


- Any interesting spectral region can be covered by one chosen crystal material
- Simplify the crystal choice
 →Diamond as highest reflectivity
 & best mechanical and thermal properties

R. M.J.Cotterill, APL, 403,133 (1968) KJK & Y. Shvyd'ko, PRSTAB (2009)

Brightness of Hard X-Ray Sources

XFELO Parameters

- Electron beam:
 - − Energy ♦ 7 GeV
 - Bunch charge ~ 25-50 pC \rightarrow low intensity
 - Bunch length (rms) 1 (0.1 ps) Peak current 20 (100) A
 - Normalized rms emittance < 0.2 (0.3) mm-mr, energy spread (rms) ~ 2° 10⁻⁴
 - Constant bunch rep rate @ ~1 MHz
- Undulator:
 - L_u = 60 (20) m, λ_u ~2.0 cm, K=1.0 1.5
- Optical cavity:
 - 2- or 4- diamond crystals and focusing mirrors
 - Total round trip reflectivity > 85 (50) %
- XFELO output:
 - − 5 keV ≏ 🖢 ∞ ≏ 25 keV
 - Bandwidth: $\Delta\omega/\omega \sim 1$ (5) $\otimes 10^{-7}$, pulse length (rms) = 500 (80) fs
 - # photons/pulse ~ 1\$109
 - Harmonics feasible if x-ray pulse sees a crystal before grazing incidence mirror

Blue color indicates short-pulse mode for relaxed tolerances

XFELO will revolutionize the hard x-ray techniques developed at storage-ring-based light sources and find new applications in areas complementary to SASE

- Inelastic x-ray scattering
- Mössbauer spectroscopy
 - 10³/pulse, 10⁹/sec Mössbauer photons (14.4 keV, 5 neV BW)
- Bulk-sensitive Fermi surface study with HAXPES
- Time-resolved methods (0.1 -1 ps)
- X-ray imaging with near atomic resolution (~1 nm)
 - Smaller focal spot with the absence of chromatic aberration
- X-ray photon correlation spectroscopy
 - 10¹⁵ photons/sec is a game changer, better time structure than LCLS, t-coherence is a huge advantage
- Science/FEL WG (Tu. 1:30-4:00 PM)

R&D Issues Towards an XFELO

- FEL beam dynamics, modeling
 - R. Lindberg and W. Fawley (this session)
- X-ray optics: crystals, stability
 - Y. Shvyd'ko (this session)
- Grazing incidence curved mirror
 - A. Barty (this session)
- Injector
 - A. Nassiri: ERL/HBEB, Tu. 4:30-4:55 PM
 - N. Sereno: HBEB, Th. 9:00-9:30 AM
- Main accelerator
 - A 7 GeV linac will be most versatile, accommodating other FELs
 - ERL Option: R. Hajima, FEL/ERL WG, Th. 9:00-9:30 AM
 - Recirculation: M. Borland, ERL/FEL WG, Th. 9:45 -10:00 AM

This Session

- 1:40 PM K.-J. Kim: Introduction
- 1:50 PM R. Lindberg: *Beam Dynamics and Performance*
- 2:10 PM Y. Shvyd'ko: X-ray Cavity Feasibility Studies
- 2:35 PM W. Fawley: Simulation Issues
- 2:50 PM J. Zemella: An XFELO @ European FEL
- 3:05 PM: A. Barty: State of the Art X-ray Optics
- 3:30 PM: All: Discussion and Conclusion