$\mathrm{B} \rightarrow X_{s} \gamma$ af NNLO: effect of the photon energy cut

Thomas Becher

*) Fermilab

Loopfest V, SLAC, June '06

TB and M. Neubert, hep-ph/0512208, hep-ph/0603140 and in preparation

Outline

- Introduction
- Experimental result, theory at NLO
- Status of NNLO calculation
- Matching, running, matrix elements
- Photon energy cut
- Factorization and resummation
- Two-loop calculation of the soft- and jetfunction
- A wonderful formula

$B \rightarrow X_{s \gamma}$

- The mother of all FCNC processes
- Suppressed in the SM, but large enough to be well measured.
- Sensitive probe of New Physics. E.g. MSSM

W

Experiment vs. NLO theory

$$
\operatorname{Br}_{\exp }\left(E_{\gamma}>1.6 \mathrm{GeV}\right)=\left(3.55 \pm 0.24_{-0.1}^{+0.09} \pm 0.03\right) \times 10^{-4}
$$

HFAG ‘06

$m_{c} / m_{b}=0.29 \pm 0.02$ (pole mass)

$$
m_{c} / m_{b}=0.22 \pm 0.04(\overline{\mathrm{MS}})
$$

$$
\operatorname{Br}_{\mathrm{SM}}\left(E_{\gamma}>1.6 \mathrm{GeV}\right)=(3.33 \pm 0.29) \times 10^{-4}, \quad m_{c} / m_{b}=0.26 \pm 0.01
$$

Experiment?

$$
\operatorname{Br}_{\exp }\left(E_{\gamma}>1.6 \mathrm{GeV}\right)=\left(3.55 \pm 0.24_{-0.1}^{+0.09} \pm 0.03\right) \times 10^{-4}
$$

model uncertainty $\xlongequal[b \rightarrow d \gamma]{\uparrow} \quad$ HFAG '06

- All experiments have $E_{\gamma}>E_{0} \geq 1.8 \mathrm{GeV}$
- HFAG uses model shape function to extrapolate results to $E_{0} \geq 1.6 \mathrm{GeV}$.
- Use single functional form with two parameters $\left(m_{\mathrm{b}} \& \mu_{\pi}\right)$ and
- model falls off exponentially instead of power-like
- Until recently, experiments used to extrapolate to the total rate.

Extrapolation to lower cut energy E0

- Standard OPE calculation is unreliable at high E_{0}. (Note $E_{\max }=\mathrm{m}_{\mathrm{B}} / 2$)
- Is it reliable at $E_{0}=1.6 \mathrm{GeV}$?
- For current measurements $E_{0} \leq 1.9 \mathrm{GeV}$, model independent calculation is possible!

Neubert '04

- Multi-Scale OPE \rightarrow third part of the talk
- Compare event fractions: $F\left(E_{0}\right)=\Gamma\left(E_{\gamma}>E_{0}\right) / \Gamma_{\text {tot }}$

	MSOPE @ $\underset{\text { Neubert }{ }^{0} 04}{\mathrm{NLO}}$	HFAG ‘06 Buchmüller, Flächer ${ }^{0} 06$
$\mathrm{F}\left(\mathrm{E}_{\gamma}>1.8 \mathrm{GeV}\right)$	0.88 ± 0.07	0.933 ± 0.006

NNLO

- Experimental uncertainty already somewhat smaller than theoretical uncertainty. Need
- total rate to NNLO and
- calculation of event fraction to NNLO.

$$
\operatorname{Br}\left(E_{\gamma}>E_{0}\right)=\operatorname{Br}(\text { tot }) \times F\left(E_{0}\right)
$$

- With present agreement between theory and experiment large deviation unlikely.
- Reliable uncertainties crucial to get meaningful bounds on New Physics.

Total $B \rightarrow X_{s} \gamma$ rate to NNLO: quite a loopfest in itself!

Calculation of the total rate

- Three steps

- At lowest order in 1 / m_{b} OPE calculation boils down to evaluating the partonic $b \rightarrow s \gamma$ matrix elements
- Leading power corrections are known to LO
- NLO EW corrections known

Effective weak Hamiltonian

- Small contribution from $\left|C_{3-6}\left(m_{b}\right)\right|<0.07$

$m_{b} \bar{s}_{L} \sigma_{\mu \nu} F^{\mu \nu} b_{R}$
$C_{7}\left(m_{b}\right) \approx-0.3$
$C_{8}\left(m_{b}\right) \approx-0.15$
$\left|C_{1,2}\left(m_{b}\right)\right| \approx 1$

Effective Hamiltonian at NNLO: matching

Figure 1: One of the $\mathcal{O}\left(10^{3}\right)$ three-loop diagrams that have calculated.
Misiak and Steinhauser '04

- Matching at the weak scale complete.
- $\mathrm{NNLO}=$ three loops because of weakinteraction loop ("penguin")

Effective Hamiltonian at NNLO: running

Gorbahn and Haisch '04
Gorbahn, Haisch, Misiak ‘05

Czakon, Haisch \& Misiak, to appear

- Done: Four quark operators, self-mixing of dipole operators.
- New: four-loop anomalous dimensions for mixing Q_{1-6} into $\mathrm{Q}_{7 .}$ (>100'000 diagrams)
- Effect on Br is -2.4%, larger than expected.
- Soon: Q_{1-6} into Q_{8}. Completes NNLO eff. Hamiltonian!

Matrix elements

Melnikov, Mitov ‘05
Blokland, Czarnecki, Misiak, Slusarczyk, Tkachov '05

n_{f}-part: Bieri, Greub, Steinhauser '03

- Done: Matrix element of Q7.
- Most complicated part of entire calculation are the 3-loop matrix elements of $Q_{1,2}$.
- n_{f}-part known.
- expansion around $m_{c} / m_{b} \gg 1$ (!) calculated, extrapolation to $\mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{b}}$. Misiak et al., to appear
- At NLO this works numerically fairly well, but...

Photon energy cut

1. The total rate cannot be measured.
2. Even if it could be measured, it could not be calculated.
3. Even if it could be calculated, the result would be incorrect.
after Gorgias, 483-375 BC

Photon energy cuł

- Total rate is not measurable, need to impose cut on photon energy $E_{\gamma}>E_{0}$
- Experimentally very energetic photon is necessary to suppress background.
- All experiments have $E_{0} \geq 1.8 \mathrm{GeV}$.
- Note: $E_{\gamma}<m_{B / 2} \approx 2.6 \mathrm{GeV}$
- Need to cut out charm resonances: decay $\mathrm{B} \rightarrow \psi X$ followed by $\psi \rightarrow X \gamma$. Achieved by setting $E_{0}>1.5 \mathrm{GeV}$.

Photon energy spectrum

- Belle has $E_{0}=1.8 \mathrm{GeV}, \mathrm{BaBar} E_{0}=1.9 \mathrm{GeV}$
- Cut complicates theoretical analysis...

Scales

- With a cut $E_{\curlyvee}>E_{0}$, problem contains three relevant scales
- Hard scale: mb
- Jet scale: $\mathrm{Mx}_{\mathrm{x}} \sim\left(m_{\mathrm{b}} \Delta\right)^{1 / 2}$
- Soft scale: $\Delta=m_{\mathrm{b}}-2 E_{0}$
- OPE becomes expansion in Λ / Δ instead of Λ / m_{b} !

$E_{0}[\mathrm{GeV}]$	$\Delta[\mathrm{GeV}]$	$\mathrm{M}_{\mathrm{x}}[\mathrm{GeV}]$	
0	4.6	4.6	OPE
1.6	1.4	2.5	MSOPE
1.8	1.0	2.1	MSOPE
2.0	0.6	1.7	Shape-function

Factorization theorem

$$
\begin{array}{r}
\Gamma \sim H^{2} J \otimes S \\
\text { hard } \quad \text { jet } \underset{\substack{\text { soft } \\
\text { shape function }}}{ }
\end{array}
$$

Soft-Collinear Effective Theory

Heavy-Quark Effective Theory

Event fraction

$$
F\left(E_{0}\right)=h\left(m_{b}, \mu\right) \int_{0}^{\Delta} d P \int_{0}^{P} d \omega J\left(m_{b}(P-\omega), \mu\right) S(\omega, \mu)
$$

- Any choice of scale μ leads to large perturbative log's, either in h, J, or S.
- Evaluate each part at its characteristic scale and use RG evolution to evolve to a common scale.
- This resums all (Sudakov) logarithms.
- Same jet-function J as in DIS for $x \rightarrow 1$.

Calculation of the soft function

$$
\begin{gathered}
s\left(\ln \frac{\Omega}{\mu}, \mu\right) \equiv \int_{0}^{\Omega} d \omega\left\langle b_{v}\right| \bar{h}_{v} \delta(\omega+\text { in } \cdot D) h_{v}\left|b_{v}\right\rangle=\frac{1}{2 \pi i} \oint_{|\omega|=\Omega} d \omega\left\langle b_{v}\right| \bar{h}_{v} \frac{1}{\omega+i n \cdot D+i 0} h_{v}\left|b_{v}\right\rangle \\
\operatorname{Sparton}(\omega, \mu)
\end{gathered}
$$

- Write δ-distribution operator in shape function as discontinuity of propagator
\Rightarrow Calculation can be done with standard techniques for loop integrals

Calculation of the soft function

- \times-vertex denotes possible insertion of lightcone propagator
- All diagrams are expressed in terms of integrals

$$
\int d^{d} k d^{d} l \frac{(-1)^{-a_{1}-a_{2}-a_{3}-b_{1}-b_{2}-b_{3}-c_{1}-c_{2}}}{\left(k^{2}\right)^{a_{1}}\left(l^{2}\right)^{a_{2}}\left[(k-l)^{2}\right]^{a_{3}}(v \cdot k)^{b_{1}}(v \cdot l)^{b_{2}}[v \cdot(k+l)]^{b_{3}}(n \cdot k+\omega)^{c_{1}}(n \cdot l+\omega)^{c_{2}}}
$$

- Use integration-by-part relations to reduce to four master integrals ("AIR" by Anastasiou and Lazopoulos hep-ph/0404258)

Result for the soft function

$$
\begin{aligned}
s(L, \mu)= & 1+\frac{\alpha_{s}(\mu)}{4 \pi}\left[c_{0}^{(1)}+2 \gamma_{0} L-\Gamma_{0} L^{2}\right] \\
& +\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2}\left[c_{0}^{(2)}+\left(2 c_{0}^{(1)}\left(\gamma_{0}-\beta_{0}\right)+2 \gamma_{1}+\frac{2 \pi^{2}}{3} \Gamma_{0} \gamma_{0}+4 \zeta_{3} \Gamma_{0}^{2}\right) L\right. \\
& \left.+\left(2 \gamma_{0}\left(\gamma_{0}-\beta_{0}\right)-c_{0}^{(1)} \Gamma_{0}-\Gamma_{1}-\frac{\pi^{2}}{3} \Gamma_{0}^{2}\right) L^{2}+\left(\frac{2}{3} \beta_{0}-2 \gamma_{0}\right) \Gamma_{0} L^{3}+\frac{\Gamma_{0}^{2}}{2} L^{4}\right]
\end{aligned}
$$

- All $\mathrm{L}=\ln (\Omega / \mu)$ terms known from solving RG equation for the shape function \rightarrow check on the calculation. Neubert ' 05
- Calculation gives constant $\mathrm{c}_{0}{ }^{(2)}$ and checks two loop

$$
\begin{aligned}
c_{0}^{(2)}= & C_{F}^{2}\left(-\frac{4 \pi^{2}}{3}-\frac{3 \pi^{4}}{40}+32 \zeta_{3}\right)+C_{F} C_{A}\left(-\frac{326}{81}-\frac{427 \pi^{2}}{108}+\frac{67 \pi^{4}}{180}-\frac{107}{9} \zeta_{3}\right) \\
& +C_{F} T_{F} n_{f}\left(-\frac{8}{81}+\frac{5 \pi^{2}}{27}-\frac{20}{9} \zeta_{3}\right) . \quad \text { TB and Neubert, hep-ph/0512208 }
\end{aligned}
$$

Calculation of the jet.function

$J\left(p^{2}\right)=\frac{1}{\pi} \operatorname{Im}\left[i \mathcal{J}\left(p^{2}\right)\right] ; \quad \frac{n h}{2} \bar{n} \cdot p \mathcal{J}\left(p^{2}\right)=\int d^{4} x e^{-i p x}\langle 0| \mathrm{T}\left\{\frac{\eta h \vec{h}}{4} W^{\dagger}(0) \psi(0) \bar{\psi}(x) W(x) \frac{\vec{n} n h}{4}\right\}|0\rangle$
light-cone vectors n and \bar{n}

Result for the jet function

- One difficult master integral

$$
\int d^{d} k \int d^{d} l \frac{1}{k^{2} l^{2}(k+p)^{2}(l+p)^{2}(k+l+p)^{2} \bar{n} \cdot k \bar{n} \cdot l}
$$

- Use Mellin-Barnes representation, but careful with light-cone propagators
- Check numerically using sector decomposition
- Result for two-loop constant in J

$$
\begin{aligned}
& b_{0}^{(2)}=C_{F}^{2}\left(\frac{205}{8}-\frac{67 \pi^{2}}{6}+\frac{14 \pi^{4}}{15}-18 \zeta_{3}\right)+C_{F} n_{f}\left(-\frac{4057}{324}+\frac{34 \pi^{2}}{27}+\frac{8}{9} \zeta_{3}\right) \\
&+C_{A} C_{F}\left(\frac{53129}{648}-\frac{208 \pi^{2}}{27}-\frac{17 \pi^{4}}{180}-\frac{206}{9} \zeta_{3}\right)
\end{aligned}
$$

RG evolution of the jet-function

$$
\begin{aligned}
\frac{d J\left(p^{2}, \mu\right)}{d \ln \mu}= & -\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{p^{2}}{\mu^{2}}+2 \gamma^{J}\left(\alpha_{s}\right)\right] J\left(p^{2}, \mu\right) \\
& -2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \int_{0}^{p^{2}} d p^{\prime 2} \frac{J\left(p^{\prime 2}, \mu\right)-J\left(p^{2}, \mu\right)}{p^{2}-p^{\prime 2}}
\end{aligned}
$$

Sudakov factor

$$
\begin{aligned}
J\left(p^{2}, \mu\right) & =\exp \left[-4 S\left(\mu_{i}, \mu\right)+2 a_{\gamma^{J}}\left(\mu_{i}, \mu\right)\right] \\
& \times \widetilde{j}\left(\partial_{\eta}, \mu_{i}\right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(\eta)} \frac{1}{p^{2}}\left(\frac{p^{2}}{\mu_{i}^{2}}\right)^{\eta}
\end{aligned}
$$

$$
\begin{aligned}
\eta & =2 \int_{\mu_{0}}^{\mu_{i}} \frac{d \mu}{\mu} \Gamma_{\text {cusp }}\left[\alpha_{s}(\mu)\right] \\
& =2 a_{\Gamma}\left(\mu_{i}, \mu\right)
\end{aligned}
$$

- Associated jet-function \tilde{j} is Laplace transform of $J\left(p^{2}, \mu_{\mathrm{i}}\right)$.
- RG evolution of shape function $S\left(\omega, \mu_{\mathrm{i}}\right)$ has exactly the same form.

$$
F\left(E_{0}\right)=h\left(m_{b}, \mu\right) \int_{0}^{\Delta} d P \int_{0}^{P} d \omega J\left(m_{b}(P-\omega), \mu\right) S(\omega, \mu)
$$

- Plug in solution of RG equations

$$
\begin{aligned}
F\left(E_{0}\right)= & \left(\frac{m_{b}}{\mu_{h}}\right)^{-2 a_{\Gamma}\left(\mu_{h}, \mu\right)}\left(\frac{m_{b} \Delta}{\mu_{i}^{2}}\right)^{2 a_{\Gamma}\left(\mu_{i}, \mu\right)}\left(\frac{\Delta}{\mu_{0}}\right)^{-2 a_{\Gamma}\left(\mu_{0}, \mu\right)} \\
& \times \exp \left[2 S\left(\mu_{h}, \mu\right)-2 S\left(\mu_{i}, \mu\right)+2 S\left(\mu_{0}, \mu\right)-2 a_{\gamma^{J}}\left(\mu_{h}, \mu_{i}\right)-2 a_{\gamma}\left(\mu_{h}, \mu_{0}\right)\right] \\
& \times h\left(\ln \frac{m_{b}}{\mu_{h}}, \mu_{h}\right) \tilde{j}\left(\ln \frac{m_{b} \Delta}{\mu_{i}^{2}}+\partial_{\eta}, \mu_{h}\right) \tilde{s}\left(\ln \frac{\Delta}{\mu_{0}}+\partial_{\eta}, \mu_{h}\right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(1+\eta)} \\
&
\end{aligned}
$$

"Wonderful formula"

$$
\begin{aligned}
F\left(E_{0}\right)= & \left(\frac{m_{b}}{\mu_{h}}\right)^{-2 a_{\Gamma}\left(\mu_{h}, \mu\right)}\left(\frac{m_{b} \Delta}{\mu_{i}^{2}}\right)^{2 a_{\Gamma}\left(\mu_{i}, \mu\right)}\left(\frac{\Delta}{\mu_{0}}\right)^{-2 a_{\Gamma}\left(\mu_{0}, \mu\right)} \\
& \times \exp \left[2 S\left(\mu_{h}, \mu\right)-2 S\left(\mu_{i}, \mu\right)+2 S\left(\mu_{0}, \mu\right)-2 a_{\gamma^{J}}\left(\mu_{h}, \mu_{i}\right)-2 a_{\gamma}\left(\mu_{h}, \mu_{0}\right)\right] \\
& \times h\left(\ln \frac{m_{b}}{\mu_{h}}, \mu_{h}\right) \tilde{j}\left(\ln \frac{m_{b} \Delta}{\mu_{i}^{2}}+\partial_{\eta}, \mu_{h}\right) \tilde{s}\left(\ln \frac{\Delta}{\mu_{0}}+\partial_{\eta}, \mu_{h}\right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(1+\eta)}
\end{aligned}
$$

- All scales separated, no large perturbative logarithms.
- Simple analytic expressions for resummed result
- no need to go to moment space
- no Landau pole ambiguities
- Very similar expressions for DIS and Drell-Yan in threshold region. \rightarrow Matthias' talk

Reduced scale dependence

- Result is very stable under variation of the lowest scale $\mu_{0} \sim \Delta \approx 1 \mathrm{GeV}$!

Summary and Conclusion

- $B \rightarrow X_{\mathrm{s}} \gamma$ is an important constraint on New Physics.
- NNLO calculation is progressing fast
- Calculation of eff. weak Hamiltonian is almost complete.
- Matrix elements of Q_{7} known; approximations for matrix elements of $\mathrm{Q}_{1,2}$.
- Effect of the photon energy cut has been calculated.
- NNLO numbers should follow soon...

extra slides

The need for resummation: fixed order result

- $\mu=\Delta$? $\mu=\left(\Delta m_{b}\right)^{1 / 2}, \mu=m_{b}$?

Experimental results

Mode	Reported \mathcal{B}	$E_{\min }$	\mathcal{B} at $E_{\min }$	Modified $\mathcal{B}\left(E_{\min }=1.6\right)$
CLEO Inc. [264]	$321 \pm 43 \pm 27_{-10}^{+18}$	2.0	$306 \pm 41 \pm 26$	$329 \pm 44 \pm 28 \pm 6 \pm 6$
Belle Semi. [265]	$336 \pm 53 \pm 42_{-54}^{+50}$	2.24	-	$369 \pm 58 \pm 46_{-60}^{+56}$
Belle Inc. [266]	$355 \pm 32_{-31-7}^{+30+11}$	1.8	$351 \pm 32 \pm 29$	$350 \pm 32_{-31}^{+30} \pm 2 \pm 2$
BABAR Semi. [267]	$335 \pm 19_{-41-9}^{+56+4}$	1.9	$327 \pm 18_{-43-9}^{+55+4}$	$349 \pm 20_{-46-3}^{+59+4}$
$B A B A R$ Inc. [268]	-	1.9	$367 \pm 29 \pm 34 \pm 29$	$392 \pm 31 \pm 36 \pm 30 \pm 4 \pm 6$

[264] CLEO Collaboration (S. Chen et al.), Phys. Rev. Lett. 87, 251807 (2001).
[265] Belle Collaboration (K. Abe et al.), Phys. Lett. B 511, 151 (2001).
[266] Belle Collaboration (P. Koppunberg et al.), Phys. Rev. Lett. 93, 061803 (2004).
[267] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 72, 052004 (2005).
[268] BABAR Collaboration (B. Aubert et al.), hep-ex/0507001.

