New Models

SUSY, SUSY Breaking, Electroweak Symmetry Breaking, Dark Matter,...

Roni Harnik
Pre-LHC

LHC is about to turn on!

A good understanding of as many models as possible will help us find and interpret new physics at the LHC.

Allot of our time (but not all!) is devoted to models and signals with LHC consequences.

Here’s a sample.
I’ll divide the into 3 categories.
1. “Natural”:
Meta-Stable SUSY

* The leading avenue for natural BSM physics has bean Supersymmetry.

* **How is SUSY broken?**

* Constructing models of SUSY has bean challenging.

* ISS have pointed out a simple possibility:

\[V = \begin{cases} V_{\text{peak}} & \Phi = \Phi_{\text{peak}} \\ V_+ & \text{otherwise} \end{cases} \]

SQCD

+ mass term
mu Problem

* MSSM: why is the supersymmetric Higgs mass of the same size as SUSY?
* Kitano: if the Higgs is a composite of the ISS sector

This is actually the old Guidice-Massiero mechanism for the mu problem, but it is now applicable outside of gravity mediation!
Reheating ISS

* Which vacuum are we likely to land in?
* A careful and systematic analysis of the cosmological history is needed.

* CFW: First order phase transition

\[
T_c \sim \frac{\mu}{(N_F + N)^{1/4}}
\]

Which vacuum are we likely to land in?

A careful and systematic analysis of the cosmological history is needed.

CFW: First order phase transition

\[
T_c \sim \frac{\mu}{(N_F + N)^{1/4}}
\]
Reheating ISS

* Which vacuum are we likely to land in?
* A careful and systematic analysis of the cosmological history is needed.
* CFW:

\[(\mu^2 \Lambda^a)^{\frac{1}{2+a}} \]

1: \(q \neq 0, M = 0 \)
2: \(q = 0, M \neq 0 \)

Second order phase transition, \(T_c \sim \mu \)
First order phase transition, \(T_c \sim \mu \) lifetime controlled by \(\frac{\Lambda}{\mu} \)

Which vacuum are we likely to land in?
A careful and systematic analysis of the cosmological history is needed.

CFW:
2. Un-Natural:
6-Higgs Doublet Model

- A minimal way to extend the SM to get Unification and Dark matter:

 \[
 \text{SM + one 5-plet of Higgs doublets.}
 \]

 1. Extra doublets change running: couplings unify
6-Higgs Doublet Model

- A minimal way to extend the SM to get Unification and Dark matter:

$$\text{SM} + \text{one 5-plet of Higgs doublets}.$$

the hierarchy problem

one more fine tuning

Good value:

“Two for the price of one”
6-Higgs Doublet Model

Collider signals are hard.
But direct detection has good prospects:

![Graph showing cross section per nucleon vs. WIMP mass (GeV)]

- CDMS II 2007
- SuperCDMS

Cross section per nucleon (cm²)

WIMP mass (GeV)
3. Natural, but not what you’d naively expect:
Uncolored Partners

* Naturalness implies the existence of a top partner, that's related to the top by symmetry.

![Diagram](image)

squarks are colored!

Great news for LHC!!!
Uncolored Partners

* Naturalness implies the existence of a top partner, that's related to the top by symmetry.

squarks are colored!
Great news for LHC!!!

But, do squarks really have to be colored?!
Folded Supersymmetry

* The divergence may be canceled by “discrete” partners:

Inspired by large-N orbifold correspondence

Squarks are charged under QCD’, but also under our EW group.
Folded Supersymmetry

* The divergence may be canceled by “discrete” partners:

$$\begin{align*}
 t & \leftrightarrow Z_2 & t' \\
 \tilde{t} & \leftrightarrow Z_2 & \tilde{t}'
\end{align*}$$

Squarks are charged under QCD’, but also under our EW group.
New Signals

* The dynamics of QCD’ is very different: squarks are produced but remain bound!

quirks (or squirks, rather) - Luty et al, Strassler and Zurek.

In progress: Burdman, Chacko, Goh, RH; Wizansky, RH.
New Signals

* The dynamics of QCD’ is very different: squarks are produced but \textbf{remain bound}!

 quirks (or squirks, rather) - Luty et al, Strassler and Zurek.

In progress: Burdman, Chacko, Goh, \textbf{RH}; Wizansky, RH.
New Signals

* The dynamics of QCD’ is very different: squarks are produced but remain bound!

quirks (or squirks, rather) - quirks (or squirks, rather) -

Luty et al, Strassler and Zurek.

In progress:
Burdman, Chacko, Goh, RH; Wizansky, RH.

Soft radiation down to the ground state.

Annihilation to SM particles.
And so on........

Matching MadEvent to Pythia

W’s at LHC

LHC$^{-1}$=ILC

Light Gluinos

QCD on $R_3 \times S_1$

Event generation with twistors

Atom interferometry

Techniques for high order QCD

the “Entropic Principle”
In Conclusion

LHC is Coming!
We’re excited and exploring possibilities!