

X-ray Fluorescence Imaging of Sulfur: Application to Biology

Ingrid J. Pickering

Professor and Canada Research Chair in Molecular Environmental Science University of Saskatchewan ingrid.pickering@usask.ca

SSRL Structural Molecular Biology Low-Z XAS Summer School 2010 July 20, 2010

Overview

- > Why image sulfur?
- Imaging methods

- Mercury accumulation in zebrafish larvae
- Example 2: Imaging sulfur forms
 Sulfur in intact tissues
- Next steps

Sulfur XAS of Biological Tissues

- Sulfur X-ray absorption spectroscopy is a unique *in situ* probe for biological systems
 - Looks at all sulfur in sample
 solid, solution, gas etc.
 - Chemical species information
 - No pretreatment necessary
 - Non-destructive (at least in principal)
 - Ideal for complex samples such as whole tissues

XAS of Biological Samples

X-ray absorption spectroscopy can probe molecular form (speciation) of sulfur in a variety of biological samples

Purified proteins

Isolated organelles

Cell cultures

Tissue sections

Intact organs

Intact organisms

Can also study environments such as soil or water, food, etc...

XAS Imaging of Biological Samples

> Most biological samples are structured

We would like to obtain spatial information about the distributions of elements, including sulfur

XAS Imaging of Biological Samples

> Questions we may want to answer:

- How is sulfur distributed?
 - What is the chemical form of sulfur in a particular location?
- How is a sulfur chemical species distributed?
- We would like to do this when levels are dilute, and on intact living specimens

X-ray Fluorescence Imaging

- If X-ray energy is above an element's absorption edge, the element will "fluoresce" X-rays
 - Each element has a characteristic energy
 - Can image total sulfur, along with other elements, using hard X-ray beamline
- > Also called:
 - X-ray fluorescence microprobe
 - μ-XRF (μ-X-ray fluorescence)
 - SRIXE (synchrotron radiation induced X-ray emission)

Micro-XAS

- Following fluorescence imaging, select a pixel of interest and collect a spectrum
- Micro-XAS spectrum can then be analyzed in a similar way to a bulk spectrum
- This is also known as:
 µ-XAS, µ-XANES, µ-XAFS, .
- HOWEVER, beam dwells on sample a long time, therefore beam damage an issue

XAS-Imaging

- > Use the sensitivity of the near-edge to generate maps of chemical species for a given element
- > Works best for species with large contrast in the edge, such as sulfur
- Also known as Chemically-Specific imaging, XANES-imaging, oxidation-state imaging etc.
- Need small beam with <u>very good</u> energy resolution at the energy of interest (S K-edge)

Choice of XAS Imaging

- > Micro X-ray fluorescence plus micro-XAS:
 - Gives entire XAS spectrum at selected points
 May miss spatial detail
 - May miss spatial detail
 Longer dwell time at those pixels

> XAS Imaging:

- * Need to know which species to look for
- * Need good spectral contrast between species
- ✓ Shorter dwell times
- Gives quantitative spatial maps of each species

Special Issues at Sulfur K-edge

Compared with hard X-ray measurements:

- > Attenuation is substantial
 - Use thin or no windows
 - Reduce air path or use He
- Beam damage is HIGHER with lower energy beam!
 - Beam is absorbed in very short pathlength

Summary and Future Studies

- X-ray fluorescence imaging of zebrafish is a sensitive system to study the fate of elements in vertebrates
 - Sulfur distributions may give important insights into biochemistry

- Future studies include:
 - Studying fates of different mercury chemical forms
 - Testing treatments (e.g. chelation agents)
 - Continuing personnel: Gosia Korbas, Tracy MacDonald
- Next paper: M Korbas, PH Krone, IJ Pickering & GN George, J. Biol. Inorg. Chem. (published online)

Example 2: Imaging of Sulfur Species in Whole Cells

IJ Pickering, EY Sneeden, RC Prince, E Block, HH Harris, G Hirsch & GN George (2009) Biochemistry, 48: 6846-6853

Why Study Sulfur in Whole Cells?

- > Sulfur is an essential biological element

 - Diverse biochemistry
- > Sulfur is "spectroscopically silent"
 - Sulfur biochemistry only partly understood because there are so few tools for studying it in biological systems
- Having a probe of the total sulfur in cell cultures could help study

Sulfur K-edge Spectrum

Sulfur K near-edge spectrum is rich

Spectrum sensitive to local structure

Sulfur K-edge XAS Imaging

- Ongoing research program aimed at studying sulfur in mammalian cells
 - However, these are very challenging (small size, fragile, low concentration sulfur)
- > Start with more tractable samples
 - Use as stepping stone and proof of principal

Sulfur forms in onion

Onion Chemistry

- > Where in onion is the precursor located?
 - Conventional analysis cannot answer this
 - As soon as the cells are broken, the precursor is destroyed
- > Use sulfur K-edge XAS imaging

IJ Pickering, EY Sneeden, RC Prince, E Block, HH Harris, G Hirsch & GN George Biochemistry, 48: 6846-6853

Spectromicroscopy of Sulfur in Onion

Red Onion – Transport Vessel

Amounts Identi Ce Show Re suitoxide Sulfoxide Disulfide RSR/RSH

Identify three regions: • Center – disulfide-rich

- Sheath RSR/RSH-rich
- Remainder (cortex) sulfoxide-rich cell interior disulfide-rich cell walls

17

Future Work: Imaging Sulfur at Different Length Scales

Imaging Sulfur in Brain

- Conventionally, microprobe developments push for smaller and smaller beams
- While this is valuable in many cases, sometimes this is not helpful
- Example: Human brain is too large to image at micron resolution in a tractable amount of time...

Combine Different Imaging Length Scales

Three resolutions - analogous to microscope objectives

Macro imaging: Large organs or surveys 100 µm pixel Micro imaging: Small organs or organisms 1-5 µm pixel

"Nano" imaging: Subcellular resolution 200 nm pixel

Summary

- > Total Sulfur Imaging
 - Use hard X-ray microprobe beamline
 - Good for studies of co-location
- Speciation of Sulfur
 - Use microprobe beamline at S K-edge (e.g. BL 14)
- > Low Energy Challenges
 - More attenuation
 - More beam damage

Group Members

Acknowledgements

Stanford Synchrotron Radiation Laboratory (U.S. DOE and NIH)

Canada Research Chairs

Canada Research Chairs Program University of Saskatchewan Province of Saskatchewan CFI, NSERC, NIH, CIHR, SHRF

CIHR - THARUST

- Synchrotron health training program at the University of Saskatchewan and the Canadian Light Source
- Cross-disciplinary training in XAS, XRFimaging, protein crystallography and biomedical imaging as applied to health
- ✤ Money available for MSc, PhD & postdoctoral fellows
- I am program leader see me for details!

http://artsandscience.usask.ca/thrust thrust@artsandscience.usask.ca