

BL Optics - Soft X-ray - 7/20/10 SMB Summer School - Rabedeau

X-ray Crystal Monochromators Harmonic Content

- crystal monochromators pass not only the fundamental energy of interest but also allowed higher order harmonics since $\sin \theta = (\lambda / 2a_0)(h^2 + k^2 + l^2)^{\frac{1}{2}}$
- fortunately the reduced Darwin width of higher order harmonics decreases the diffracted intensity as a function of peak index
- Si(111) example with fundamental at 2472 eV (53.13 deg):

index	energy (eV)	Darwin (urad)	δε/ε
111	2472	177.0	1.33e-4
333	7416	12.2	9.1E-06

- narrower rocking curves also facilitate slightly detuning double crystal pair in monochromator to suppress diffraction from harmonics while retaining most of diffracted intensity of fundamental
 - *detuning maximizes mono sensitivity to crystal angular misalignment!*
 - it is always better to use mirrors to harmonic reject when feasible (variable incidence M0 on BL4-1, 4-3, 6-2, 7-3, 9-2, 9-3, 11-2, 14-1, & 14-3)

BL Optics - Soft X-ray - 7/20/10 SMB Summer School - Rabedeau

