Ground State Electronic Structures

from

Multi-Edge Analysis

Robert K. Szilagyi

Montana State University, Bozeman, MT

computational.chemistry.montana.edu

PERMIT CALENDARY AND A AND A THE CALENDARY AND A AND A THE AND A AND A

Program

	TUESDAY, JULY 20, 2010						
	Building 48, Redwood Rooms						
9:00 AM	:00 AM Welcome and Refreshments						
	Morning Session: Introduction to the Syncrotron Radiation and S K-edg	je XAS at SSRL					
9:30 AM	Development of S K-edge XAS at SSRL	Britt Hedman					
10:15 AM	Beam Line Optics with Focus on Soft X-ray	Tom Rabedeau					
11:00 AM	S K-edge XAS: Theory, Advantages, Pitfalls and Examples	Ritimukta Sarangi					
11:45 AM	Introduction to Imaging: Instrumentation and Special Considerations	Sam Webb					
12:30 PM	Lunch Break	_					
	Afternoon Session: S K-edge XAS and Fluorescence Mapping-App	lications					
1:30 PM	Ground State Electronic Structures from Multi-Edge Analysis	Robert K. Szilagyi					

Reminders:unique research opportunities (no other spectroscopic technique for S and CI)facilities (beamlines, instrumentation, sample prep. expertise)

semi-empirical theory (effective nuclear charge, transition dipole, covalency

On a gloomy and snowy November afternoon ...

On a gloomy and snowy November afternoon ...

Nitrosated β-subunit of human hemoglobin

RSNO compounds (CCDB)

Search Overview

Query 1	
	Query 1
5	ingle guery used. Search found structures that:
Number of Hits:	7
Percentage Completed:	100%
Filters:	None
Restriction Info:	No refcode restrictions applied
Database(s):	CSD version 5.24 (November 2002)
Date/Time done:	Mon Oct 27 08:57:00 2003
Search:	search1

Search: searc	:h1 (Mo	n Oct 2	7 08:57:00	2003): Hit 1	i i			
APENTN01								
Reference:	L.Field, F G.E.Carr	L Field, R.V.Dilts, R.Ravichandran, P.G.Lenhert, G.E.Carnahan (1978) Chem.Commun.,249						
Formula:	C7 H12 N	C7 H12 N2 O4 S1						
Compound Name:	2-(Acetyl	amino)-2-ca	rboxy-1,1-dimeth	rylethyl-thionitrite				
Space Group: Space Group No.:	P21/c 14	Cell: (Å,°)	a 7.001(2) α 90.00		c 12.378(2) γ 90.00			
R-Factor (%):	4.60	Temper	ature(K): 295	Density(g/cm	<i>⊧³);</i> 1.394			
MeCO-		-NH-			соон			
	I	H₃C—			CH₃			

H₃C CH

Page 2

Search: search1 (Mon Oct 27 08:57:00 2003): Hit 5

OCEZIF

Reference:

Macc

Search: search	:h1 (Mo	n Oct 2	7 08	:57:00 2	:00	3): Hit 4		
Reference:	N.Arulsa E.Sagan	my, D.S.Bo (1999) J.A.	hle, J. m.Che	A.Butt, G.J.Ir m.Soc., 121,	vine 711:	, P.A.Jordar 5	١,	
Formula:	C ₁₉ H ₁₅	N1 01 S1						
Compound Name:	S-Nitroso	triphenylm	ethane	thiol				
Space Group:	Pna21	Cell:	a	7.407(0)	b	28.165(3)	c	7.579(1)

Page 1

Space Group No.:	33	(A,°)	α 90.00	β 90.00 γ	90.00
R-Factor (%):	4.15	Temperatu	те(К): 295	Density(g/cm ³):	1.283

Formula:	C6 H12 M	42 O2 S1			
Compound Name:	3-(Acety	lamino)-2-m	ethyl-2-propylthior	nitrite	
Space Group: Space Group No.:	P21/c 14	Cell: (Å,°)	a 9.814(0) α 90.00		c 9.765(0 γ 90.00
R-Factor (%):	4.41	Temper	ature(K): 133	Density(g/cm ¹) ; 1.285
					/
				5	

Jonghyuk Lee, Geun-Bae Yi, D.R. Powell, M.A. Khan, G.B. Richter-Addo (2001) Can.J. Chem., 79,830

Page 6

Search: searc	:h1 (Mon Oct 27 08:57:00 2003): Hit 2
APENTN02	
Reference:	N Anuisamy D S Boble J A Butt G J Joine P A Jordan

Formula: C ₇ H ₁₂ N ₂ O ₄ S ₁	
Compound Name: S-Nitrosoacetyl-DL-penicillamine	

Space Group:	P21212	Cell:	 a 12.173(2) α 90.00 	b 13.548(2) c	6.494(1)
Space Group No.:	18	(A,°)		β 90.00 γ	90.00
R-Factor (%):	2.56	Tempera	ature(K): 173	Density(g/cm ³):	1.366

APENTN20						
Reference:	G.E.Carnahan, P.G.Lenhert, R.Ravichandran (1978) Acta Crystallogr., Sect.B:Struct.Crystallogr.Cryst.Chem., 34,2645					
Formula:	C7 H12 N2 O4 S1					
Compound Name:	S-Nitroso-N-acetyl-DL-penicillamine					
Synonym:	2-Acetar	mido-3-meth	yl-3-thionitr	oso-but	tanoic acid	
Space Group: Space Group No.:	P21/c 14	Cell: (Å,")	a 6.9 α.90.0	184(1) 10	b 12.698(2) β 107.80(1)	 c 12.353(2) γ 90.00
R-Factor (%):	4.40	Temper	ature(K):	295	Density(g/cm	3): 1.403

rage a

R-Factor (%)

7.60 Tem

Search: search	n1 (Mon	Oct 27	08	:57:00 2	00	3): Hit 6		
/IQDUU								
Reference:	K.Goto, Y.H G.Yamamo	lino, T.Kawa to, N.Takag	ashi I, S.	ma, M.Kamir Nagase (200	1ag 00)	ja, E.Yano, Tetrahedron i	Lett	.41,8479
Formula:	C ₆₇ H ₆₃ N ₁	02 S1						
Compound Name:	tris(2,2",6,6	"-Tetrameth	yl-n	n-terphenyl-5	i-y	l)methyl-S-nitr	roth	iol
Space Group: Space Group No.:	P21/c 14	Cell: (Å,°)	а (1.	12.446(2) 90.00	β	23.327(3) 105.69(0)	с 7	20.063(2) 90.00

Page 7

arature(K): 296 Density(g/cm³): 1.121

Search: search1 (Mon Oct 27 08:57:00 2003): Hit 7 VIQFAC

Reference:	K.Goto, Y.Hino, T.Kawashima, M.Kaminaga, E.Yano, G.Yamamoto, N.Takagi, S.Nagase (2000) Tetrahedron Lett.,41,847					
Formula:	C ₆₇ H ₆₃ N ₁ O ₁ S ₁					
Compound Name:	$tris (2,2^{\prime\prime},6,6^{\prime\prime}.Tetramethyl-m-terphenyl-5^{\prime}.yl) methyl-S-nitrosothiol$					
Space Group: Space Group No.:	P21/c 14	Cell: (Å,°)	a 12.484(2) α 90.00	$\begin{array}{c} {\pmb b} 23.290(3) \\ \beta \ 105.44(0) \end{array}$	c 20.090(1 γ 90.00	д
R-Factor (%)	6.90	Temperature/K): 296		Density(a/cm ² l: 1.097		

Page 8

RSNO compounds: geometric structure

RSNO compounds: electronic structure

S K-edge XAS of S-nitrosated glutathione (GSNO)

S K-edge XAS of S-nitrosated glutathione (GSNO)

S K-edge XAS of SNO compounds

S K-edge XAS of S compounds

S K-edge XAS of S compounds

S K-edge XAS as detection method for SNO

Multi-edge XAS

Conceptually NOT an original idea!

Conscious exploitation of complementary ground state electronic structure information from multiple absorbers

Molecular Orbital Theory:

Experimentally probing the excitation of an absorber core electron (1s for K) to a unoccupied/virtual molecular orbital with some absorber contribution.

Donor orbital: S 1s (localized on S, in MO picture as s.a.l.c.)

Acceptor orbital: $\phi^* = \Sigma c_i \phi_i$

for a 'simple' M-S bond: $\phi^* = c_{M,d} \phi_M(nd) + c_{M,s} \phi_M(n+1s) + c_{M,p} \phi_M(n+1p)$

 $-\operatorname{c}_{\operatorname{S},\operatorname{s}} \phi_{\operatorname{S}}(\operatorname{3s}) + \operatorname{c}_{\operatorname{S},\operatorname{p}} \phi_{\operatorname{S}}(\operatorname{3p}) + \operatorname{c}_{\operatorname{S},\operatorname{d}} \phi_{\operatorname{S}}(\operatorname{3d})$

Multi-edge XAS

for a 'simple' M-S bond:

Multi-edge XAS

Multi-edge XAS at SSRL BL6-2/4-3

Multi-edge XAS: A non-biological, but simple example

Multi-edge XAS: phosphorous K-edge

Phosphorous 3p character of the palladium-phosphorous bonds is determined from phosphorous K-edge XAS

Multi-edge XAS: chlorine K-edge

Chlorine 3p character of the palladium-chlorine bonds is determined from chlorine K-edge XAS

Multi-edge XAS: palladium L-edge

Metal 4d character of the palladium-ligand bonds is determined from palladium L-edge XAS (only L_{III} edge is shown)

Multi-edge XANES:

chloropalladium(II/IV)

K₂Pd^{II}CI₄ closed shell d⁸

K₂Pd^{IV}Cl₆

closed shell d⁶

Multi-edge XANES: CI

Inorganica Chimica Acta, 2008, 361(4), 1047-1058

Multi-edge XANES: Pd

Inorganica Chimica Acta, 2008, 361(4), 1047-1058

Experimental M-L covalency

$$\begin{aligned} \text{acceptor orbital} \quad \Psi_{a} = \sqrt{(1 - \alpha^{2})} \phi_{M} - \alpha \phi_{L} \qquad \phi_{L} = \sum_{\text{ligands}} \sum_{\text{orbitals}} c_{l,0} \phi_{l,o} \\ \text{donor orbital} \qquad \Psi_{d} = \sum_{\text{ligands}} c_{l,d} \phi_{l,d} \qquad (\text{donor is 1s for K-edge excitations}) \\ \text{electric dipole allowed transition/Fermi golden rule:} \quad |\infty| < \Psi_{a} |r| \Psi_{d} > |^{2} \\ & |\propto \left(\sqrt{(1 - \alpha^{2})} \sum_{\substack{\text{ligands}}} c_{l,d} < \phi_{M} |r| \phi_{l,d} > -\alpha \sum_{\substack{\text{ligands}}} \sum_{\substack{\text{ligands}}} \sum_{\substack{\text{orbitals}}} c_{l,d} c_{l,o} < \phi_{l,o} |r| \phi_{l,d} > \right)^{2} \\ & \text{ligand core/metal overlap} \approx 0 \qquad \text{ligand core/ligand core overlap} \approx 0 \\ \text{for 1s} \rightarrow \text{np excitation} \quad < \Psi_{a} |r| \Psi_{d} > -\alpha \sum_{\substack{\text{ligands}}} c_{l,1s} c_{l,np} \frac{1}{\sqrt{3}} < \frac{\text{Rad}(\Psi_{l,np}) |r| \text{Rad}(\Psi_{l,1s}) > \\ & < \mathscr{R} > \text{dipole integral} \\ & ||=|| < \Psi_{M-L(3p)} |r| \Psi_{L(1s)} > |^{2} = \frac{1}{3} \alpha^{2} < \mathscr{R} > \end{aligned}$$

JACS, 1992, 112(4), 1643-1645

Multi-edge XANES: chloropalladium(II/IV)

using $I(CI_t) = 21.0 \text{ eV} \rightarrow -50\% \text{ CI covalency in both } [Pd^{II}CI_4]^{2-}$ and $[Pd^{IV}CI_6]^{2-}$

from complementarity this corresponds to ~50% Pd covalency in each molecular orbital probed by XAS

from area under pre-edge features at Pd L-edges we get $I(Pd^{II}) = 20.8 \text{ (SSRL) 16.9 (ALS) eV}$ $I(Pd^{IV}) = 14.1 \text{ (SSRL) 11.9 (ALS) eV}$

to test the transferability we used I(Pd^{II}) to determine the covalency of Pd-CI bonds in PdCl₂ to be ~50% with a <u>new transition dipole integral</u> for I(Cl_b)16.4 (SSRL) 14.5 (ALS)

Pd-Cl bond in organometallic chemistry is the Fe-S bond in coordination chemistry

Multi-edge XANES:

non-innocent ligands

Multi-edge XANES:

4.5

4.0

3.5

3.0

2.5

2.0

1.5

0.5

0.0

922

zed

Normal

S: quantitative treatment 930.4 eV Cu L_{III}-edge

What is the Cu contribution to the redox active orbital?

What is the % Cu character the blue vs. green areas correspond to?

931

928

925

934 Photon Energy, eV

Calculated spin densities for [Ph₂BP^{tBu}₂]Cu^{II}(NTol₂)

State-of-the-Art S K-edge Data

galactose oxidase

GO samples: 93% Cu-loaded 150 µL 0.633 mM In phosphate buffer w/2M urea, pH=7 50-fold excess of $K_3Fe(CN)_6$ 37±3% oxidation

BL6-2 only! LHe cryojet only!

19 absorbers: 13 Met 4 Cys-Cys thioether crosslink

State-of-the-Art S K-edge Data

Experimental area $D_0 = 0.016 \text{ eV}$ for $N_{abs} = 19$ and $n_{holes} = 1$.

S character (α^2) is defined by the transition dipole expression

$$D_0 = \frac{1}{3} \frac{n_{\text{holes}}}{N_{\text{absorber}}} \alpha^2 (S \, 3p) \, I(S \, 1s \rightarrow 3p)$$

and with corrections for partial Cu loading and Tyr-Cys oxidation:

S character (α^2) from XAS for oxidized holo GO is 24±11% (calc.: 22±2%)

from EPR for oxidized apo GO is 20±3% (calc: 15±1%)

JACS, 2010, submitted