

The Science and Challenges for Future Detector Development in High Energy Physics

Future Detectors will include:

- Super Large Hadron Collider upgrades
 - & High radiation, pileup, and backgrounds
- International Linear Collider Detectors
 - Section measurements press detectors
- Super B Factory
 - 10^{36} luminosity presents many challenges
- Neutrino detectors
 - Massive, high efficiency
- Rare Kaon Decay, τ /Charm Detectors
 - High bandwidth, high precision

Other experiments critical to advances in HEP

(eg. dark matter detectors, or space-based experiments, left for the Particle Astrophysics Introduction)

Challenges for Future Detector Development in High Energy Physics

OUTLINE

- Physics Goals for the coming experiments
 - ✤ EWSB, SUSY, CKM and rare decays, neutrinos, ...
- Experimental Opportunities
 - **Super LHC, ILC, Super B Factory, Neutrinos**
- **o** Detector Challenges of Future Experiments
 - **Precision, Rate, Radiation, Occupancies**
- Some Important Trends in Detector Advances
 - **Advances empower our exploration**
- **o** Examples of Proposed/Planned Future Detectors
 - **& Calorimetry**
 - **Silicon Detectors for Vertex Detectors and tracking**
 - **& Gaseous Tracking**
 - ✤ Cherenkov
 - **Seturinos**

Note – necessarily biased by speaker's familiarity

– apologies for omissions

The State of Physics in 2006

Standard Model is a well tested, precise description of what we have measured. But we are certain it is not a complete theory.

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

The State of Physics in 2006

Some current fundamental priorities

electroweak symmetry breaking and origin of mass

- hierarchy problem
- dark matter (dark energy)
- neutrino mass
- matter/anti-matter asymmetry
- unification of gravity (connection to extra dimensions?)

Experiment must lead the way to understanding of these issues

Detector R&D of is critical to advance our capabilities

<u>accelerator technology</u> is advancing significantly providing opportunities and increasing demands on detectors physics questions demand ever improved detector capabilities

Experimental Opportunities

- Electroweak Symmetry Breaking
 - ✤ Discovery of Higgs expected with LHC (Tevatron?)
 - **Study of Higgs precision measurements**
 - **b** or Investigation of other mechanisms
 - * Strong interactions, Extra dimensions, or something else?
- Supersymmetry
 - ✤ Discovery of new form of matter
 - **Precision measurements follow**
- Rare decays
 - ✤ B, D, K, tau, mu
- Neutrinos
 - **Solution measurements**
 - Neutrinoless double beta decay
- Other important opportunities, notably those connected to Particle Astrophysics

Super LHC Physics Motivation

• Expand ATLAS/CMS physics potential with luminosity upgrade to 10³⁵ cm⁻² s⁻¹ for

Discoveries

- \Leftrightarrow increase mass reach by 20-30 %
- ✤ access to rare decays (Higgs, FCNC top, ...)

Precision measurements

- Higgs-to-fermion/boson couplings
- ✤ Higgs self-coupling (?)
- ✤ TGCs, QGCs, strong VL-VL scattering
- SUSY mass measurements (where rate limited)
- Aim to exploit fully the increased potential of SLHC, with a performance similar to LHC
 - Special need for improved tracking
 - Trigger and DAQ will demand significant mods
 - \Leftrightarrow Other needs eg. forward CMS crystals

Super LHC Challenges

ATLAS

- 10^{16} /cm² @ 5 cm (~400 MRad)
- 10^{15} /cm² @ 20 cm (~40 MRad)
- $\therefore 2 \times 10^{14}$ /cm² @ 50 cm (~10 MR) (dictates technology for tracker)

o <u>Pileup</u>

fluence

- ७ 200* interactions/crossing
 ७ $dN_{ch}/d\eta(\eta=0) = 1500^*$ (dictates geometry for tracker)
- o Forward Radiation

~ 10000 particles in |η| ≤ 3.2mostly low p_T tracks

SLHC Tracking

Silicon can work at r > 60 cm. six layers with pitches of 80-160 μ m will preserve performance need to exploit 12-inch wafer technology need to operate at $\times 2$ higher fluences than tested for LHC Pixels can work at 20 cm < r < 60 cm. need cells that are $\times 10$ larger than current pixels and ×10 small than current Si strips (macro-pixel) New technology is needed at r < 20 cm. need 50 μ m \times 50 μ m feature size. ideas include CVD diamond, monolithic pixels, cryogenic Si

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

ILC Detector Challenges

- > ILC physics places premium on jet measurements and tagging, in an environment where event reconstruction is possible
 - \Leftrightarrow tth \Rightarrow 8 jets
 - $hZ \implies 2l + 2 \text{ jets}, 4 \text{ jets}$
 - $hhZ \Rightarrow 2l + 4 \text{ jets}, 8 \text{ jets}$
 - Aim to fully reconstruct final state
- + SUSY, quark, τ tagging, lepton/hadron id
- Vertex precision complements calorimetry

 $\sigma_{ip} = 5\mu m \oplus 10\mu m/p \sin^{3/2} \theta$

 Precision tracking needed for decay-mode independent Higgs detection

$$e e \rightarrow Z H$$

 $Z \rightarrow l^+l^-$
 $H \rightarrow anything$
 $\sigma(1/p) = 5 \times 10^{-5}/GeV$

 $e^+e^- \rightarrow WW \nu \overline{\nu}$, $e^+e^- \rightarrow ZZ \nu \overline{\nu}$ $\frac{1}{20}$ $\Delta E_{jat} = 0.60 \sqrt{E_{jat}}$ M_{j3-j4} VS. M_{j1-j2} 0.30 $\sqrt{E_{jat}}$ 100 $60\%\sqrt{E}$ $30\%\sqrt{E}$ 60 100 $e^+e^- \rightarrow ZH/ZZ \rightarrow l\bar{l} X$ √s=300GeV $\int L dt = 500 \, fb^{-1}$ $\Delta E/E \sim 0.1\%$ 700 $\Delta P_{T}/P_{T}^{2} = 5 \times 10^{-5}$ 600 $\Delta P_{T}/P_{T}^{2} = 20 \times 10^{-5}$ 500 400 300 200

100

110

120

130

M_H (GeV/c²

ILC Flavor Tagging Challenge

~<u>billion pixel</u> vertex detectors with
 ~3 μm pt. res., and 0.1 % X₀ ladders, being developed

 \circ SLD comprised 307 Mpixels with < 4 μ m point resolution over entire system

SUSY (2 Higgs Doublet Model)

Precision measurements at a Super B Factory

Ciuchini, Super B Factory Meeting Frascati, 11/2005

Super B Factory Issues

• Rates, backgrounds, occupancies, and radiation doses are challenging

o Issues relaxed with Linear Super B Factory

*** Thousand-fold reduction in beam current seen by detector**

• Progress in neutrino oscillations motivates more massive, more sensitive detectors

Enabling Developments

Trends in technology *enable* advances in detectors

(<u>some</u> trends. not independent)

• Segmentation

- \backsim Vertex elements with 20 μm and smaller features
- **& Calorimetry employing silicon elements**
- **Micro Pattern Gas Detectors (MPGD) applications**
- Speed
 - **Faster electronics, low noise and low power**

• Integration

- **Microelectronics**
- **Mechanical sophistication**

• Materials

✤ Rad-hard, robust, thin, etc.

• Radiation immunity

- Understanding damage mechanisms and annealing
- **b** design optimization

Segmentation

• Advancing technology enables finer granularity

- ✤ Microelectronics eg. Silicon pixels
- Bump bonding technology low capacitance connections
- ✤ Modern etching technology eg. Micro pattern Gaseous Detectors

• Trade-offs between read-out, S/N, power, and segmentation

- * Limits granularity
- * Often defined by state-of-the-art in microelectronics or etching technology

o ILC examples of proposed increased granularity

- Silicon-tungsten calorimetry 90×10^6 cells (12 mm²)
- Digital hadron calorimetry 40×10^6 cells (1 cm²)
- TPC readout MPGD, also w/ Medipix2
- Vertex detectors $\sim 10^9$ pixels ($\leq 20 \times 20 \ \mu m^2$)

• Speed is often a critical parameter

- **Super LHC**
 - ✤ Pile up of events a limiting issue
- ♥ ILC
 - Accumulation of background hits in inner layer of Vertex detector
- **Super B Factory**
 - * Similar issues

o A notable advance from Micromegas and GEMs

Produced good detection efficiency, with accuracy (< 100 μm), at high rates (nearly MHz mm^-2)

- Ioanis Giomataris (Saclay)
 High Rate Capability of Micromegas
- 🗞 Fabio Sauli

Recent developments in Micro-Pattern Gas Detectors

Growth and Integration

Panofsky and Breidenbach, "Accelerators and detectors," Rev. Modern Physics <u>71</u>, S121 (1999).

Instrumented signal channels and data rate

This growth trend impact continues, with big impact

High degrees of multiplexing examples:

- 1.) SLD vertex detector
 - 307 Mpixels -> 96 channels
- 2.) ILC Si/W EM cal design
 1024 pixels/channel
 90 Mcells ⇒ 90 kchan

"growth with only moderate cost increase rests largely on continuing developments in circuit integration and computing technologies" – WKHP+MB 1999

Power constrained, low-noise electronics

Power for 100 e- noise

- Principles applied to "highly segmented detectors" can be generalized Ο
 - Finer segmentation often does not reduce signal G
 - ✤ Noise is reduced due to
 - * Lower capacitances
 - Lower leakage currents
 - * Lower rate/pixel
 - Cost is weakly dependent on number of pixels, dominated by total area P
 - Noise control demands electronics close to detector (minimize capacitances)
 - Temperature control required to control leakage currents, and gain inhomogeneity 10000

* Practical power dissipation a critical design issue

- ✤ Front-end design choices for noise, shaping time, and power budgets need care
- Interconnect issues increasing in importance P

Paul O'Connor

Future Developments of IC Processing and Microelectronics

Roadmap

	2004	2007	2010	2013	2016
Technology Node [nm]	90	65	45	32	22
Transistor count [Mtr]			1500	3092	6184
Transistor Density [Mtr/cm2]	77	154	309	617	1235
Chip Size	140				280
Clock freq [GHz]	3		15		53
Vdd	1.2	1.1	1.0	0.9	0.7
DRAM half pitch	90	65	54	32	22
Signal IO Pads	512	1024	1024	1024	1024
Power Pads	1024				2048

International Technology Roadmap for Semiconductors

A. Marchioro, CERN-PH, 2005

Mechanical complexity

- Careful and skilled mechanical design and construction can optimize detector performance
 - ✤ compactness, integration, thinness, and ultimate operation

Radiation Immunity

• Accelerator advances producing higher luminosities require experiments to confront higher radiation exposures (even moderate levels limit options)

0	Super LHC					
	$10^{16} n_{eq}^{2}/cm^{2} @ 5 cm$					
	$10^{15} n_{eq}^{2}/cm^2 @ 20 cm$					
	$\sim 2 \times 10^{14} n_{eq}/cm^2 @ 50 cm$		H. Sadrozinski			
0	ILC					
	§ 1 GigaRad/yr in BeamCal		W. Lohmann			
0	Super B Factory					
	Several MRad per year in verte	x detector	T. Iijima			
0	Ongoing advances					
	Silicon	M, Bruzzi, M. Swarz				
	Crystals	R-Y. Zhu				
	Gaseous Detectors	V. Lepeltier				
	Solution Issues for moderate exposures	J. Schwiening				
	🐁 and others					

Advancing Concepts in CALORIMETRY

Some Advancing Techniques

- **o** Digital Hadron Calorimetry
- Silicon/Tungsten Electromagnetic Calorimetry
- Particle Flow Calorimetry
- **o** Dual Readout Calorimetry
- Rad-hard Crystals

Digital Hadron Calorimetry for ILC

Effort based on RPCs or GEMs (w/CALICE)

✤ Few layer test of RPCs has started at Fermilab

• 1 m³ prototype planned to test concept

- ✤ Lateral readout segmentation: 1 cm²
- Longitudinal readout segmentation: layer-by-layer

• Objectives

- Sequence Sequence
- s Validate concept of the electronic readout
- Measure hadronic showers with unprecedented resolution
- Solution Validate MC simulation of hadronic showers

University of Texas at Arlington

Silicon/Tungsten EM Calorimetry for ILC

Front End

Chip

SLAC/Oregon/BNL/Davis/Annecy

Dense, fine grained silicon tungsten calorimeter (builds on SLC/LEP experience)

- Pads: 12 mm² to match Moliere radius (~ $R_m/4$)
- Each six inch wafer read out by one chip
- \circ < 1% crosstalk

Electronics design

- Noise < 2000 electrons
- Single MIP tagging $(S/N \sim 7)$
- Dynamically switchable feedback capacitor scheme achieves required dynamic range: 0.1-2500 MIPs

Passive cooling – conduction in W to edge

Si/W also being prototyped by CALICE

Particle Flow Calorimetry

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

Particle Flow Simulation

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

Dual Readout Calorimetry

Dual readout concept to establish compensation between electromagnetic and hadronic components of hadronic showers

- D. R. Winn and W. Worstell, "Compensating Hadron Calorimeters with Cerenkov Light", IEEE Trans. Nuclear Science Vol. NS-36, No. 1, 334 (1989)
- Scintillation and Cherenkov signals have different sensitivities to electromagnetic and hadronic components of a hadronic shower

• Idea realized by Dream detector

- ✤ Scintillator and quarz fibers
- N. Akchurin et al., "Hadron and Jet Detection with a Dual-Readout Calorimeter," Nucl. Instr. and Meth. A537 (2005) 537–561.

• Challenge for application to an experiment:

Transverse and longitudinal segmentation

Rad-hard Crystals

Endcap radiation damage for CMS crystals at SLHC

• Attractive prospect: LSO/LYSO (Ce:Lu₂SiO₅ Cerium doped Lutetium Orthosilicate

Lu_{2(1-x)}Y_{2x}SiO₅: Ce - Cerium doped Lutetium Yttrium Orthosilicate)

R-Y Zhu

- Also at Super B Factory and/or ILC?
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 %/ $\sqrt{E} \oplus 0.5$ % \oplus .002/E

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to the CMS PWO ECAL.

Advancing Concepts in SILICON TRACKING

Vertex Detectors/Inner Trackers

- Advanced pixels for LHC
- Column Parallel Readout CCDs
- **DEPFETs**
- Monolithic CMOS
- Several other approaches

Future Tracking Application

• ILC Tracker

SLHC Pixels

15

New technology is needed for r < 20 cm 0 $> 10^{15} / \text{cm}^2$ (> 40 MRad) Need 50 μ m × 50 μ m feature size

Possible solutions

CVC diamond P

- **Monolithic pixels** P
- **Cryogenic silicon** P
- **3D detectors** 孓

W. Trischuk

ILC Inner Tracking/Vertex Detection

ILC Detector Requirements

- Superb flavor tagging
 - \Rightarrow impact parameter resolution ($5\mu m \oplus 10\mu m/(p \sin^{3/2}\theta)$)
- Excellent spacepoint precision (< 4 microns)
- Transparency ($\sim 0.1\% X_0$ per layer)
- Track reconstruction (find tracks in VXD alone)

Concepts under Development for ILC

- Charge-Coupled Devices (CCDs)
 - \Leftrightarrow CCDs demonstrated in large (307 Mpix) system at SLD \Rightarrow CPCCD
- Monolithic Active Pixels CMOS (MAPs, FAPS, Macro/Micro, etc.)

R. Turchetta, C. Baltay, L. Ratti

- o DEpleted P-channel Field Effect Transistor (DEPFET) L. Andricek
- Silicon on Insulator (SoI) Y. Arai
- Image Sensor with In-Situ Storage (ISIS)
- HAPS (Hybrid Pixel Sensors)

Column Parallel CCD for ILC

SLD Vertex Detector designed to read out 800 kpixels/channel at 10 MHz, operated at 5 MHz => readout time = 200 msec/ch ILC requires faster readout for 300 nsec bunch spacing Possible Solution: Column Parallel Readout LCFI (Bristol,Glasgow,Lancaster,Liverpool,Nijmegen,Oxford,RAL)

CPC1 produced by E2V Two phase operation Metal strapping for clock 2 different gate shapes 3 different types of output 2 different implant levels Separate amplifier and readout for each column

(Whereas SLD used one readout channel for each 400 columns)

> Clock with highest frequency at lowest voltage

CPC2/ISIS1 Wafer

- **b** First-generation tests (CPC1):
 - ✤ Noise ~100 e⁻ (60 e⁻ after filter).
 - ✤ Minimum clock potential ~1.9 V.
 - Max clock frequency above 25 MHz (design 1 MHz).
 - **& Limitation caused by clock skew**

- CPC2 3 CPCCD sizes:
 - CPC2-70: 92 mm x 15 mm image area
 - ✤ CPC2-40: 53 mm long
 - **CPC2-10: 13 mm long**

Currently under test...

EMI concern (SLC experience) motivates delayed operation during beam

• Robust storage of charge in buried channel during beam passage

- Pioneered by W F Kosonocky et al IEEE SSCC 1996, Digest of Technical Papers, 182
- ✤ T Goji Etoh et al, IEEE ED 50 (2003) 144; runs up to 1 Mfps.

• ISIS Sensor details:

- CCD-like charge storage cells in CMOS or CCD technology
- Second Second
- by p+ shielding implant forms reflective barrier (deep implant)
- Solution Overlapping poly gates not likely to be available, may not be needed

Monolithic CMOS for Pixel Detector

• Standard VLSI chip, with thin, un-doped silicon sensitive layer, operated undepleted

<u>Advantages</u>

- decoupled charge sensing and signal transfer (improved radiation tolerance, random access, etc.)
- small pitch (high tracking precision)
- Thin, fast readout, moderate price

<u>R&D</u>

- <u>Strasbourg IReS</u> has been working on development of monolithic active pixels since 1989; others (<u>RAL</u>, <u>Yale/Or.</u>, <u>etc.</u>)
- IReS prototype arrays of few thousands pixels demonstrated viability.
- Large prototypes now fabricated/tested.
- Attention on readout strategies adapted to specific experimental conditions, and transfer to AMS 0.35 OPTO from TSMC 0.25
 - $\Leftrightarrow \sim 12 \text{ um epi vs.} < 7 \text{ um}$
- Application to STAR

Parallel R&D:

• <u>FAPS</u> (RAL): 10-20 storage caps/pixel

R. Turchetta

 New concepts (Macro/Micro) C. Baltay (STMicro) L. Ratti

Inner Tracking/Vertex Detection (DEPFET)

- Field effect transistor on top of fully depleted bulk
- All charge generated in fully depleted bulk; assembles underneath the transistor channel; steers the transistor current
- Clearing by positive pulse on clear electrode
- Combined function of sensor and amplifier

Properties

- low capacitance ► low noise
- Signal charge remains undisturbed by readout ► repeated readout
- Complete clearing of signal charge
 no reset noise
- Full sensitivity over whole bulk
 large signal for m.i.p.; X-ray sens.
- Thin radiation entrance window on backside ► X-ray sensitivity
- Charge collection also in turned off mode ► low power consumption
- Measurement at place of generation
 no charge transfer (loss)
- Operation over very large temperature range ► no cooling needed

MPI Munich, MPI Halle, U. Bonn, U. Mannheim

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

Silicon Tracking for ILC

• Silicon strip and pixel detectors (SiD approach)

- Manage increased radiation and pile-up
- Superb spacepoint precision allows tracking measurement goals to be achieved in a compact tracking volume
- Robust to spurious, intermittent backgrounds, eg. at ILC
- Compact tracker
 - achieves superb performance
 - allows more aggressive technical choices for outer systems (assuming an overall cost constraint)
- Robust against ILC backgrounds (esp. beam loss, a la SLC)
- 3rd dimension "measured" and backgrounds suppressed with segmented silicon strips

Advancing TPC for ILC

Time Projection Chamber technology

- Builds on successful experience of PEP-4, ALEPH, ALICE, DELPHI, STAR,
- Large number of space points, making reconstruction straight-forward
- dE/dx \Rightarrow particle ID, bonus
- Minimal material in tracking volume, valuable for barrel calorimetry
- Tracking up to large radii
- New readouts promise to improve robustness

Issues for ILC TPC

- Optimize novel gas amplification systems
 - Solution Conventional TPC readout based on MWPC and pads
 - limited by positive ion feedback and MWPC response
 - **Improvement by replacing MWPC readout with micropattern gas chambers (eg. GEMs, Micromegas)**
 - Small structures (no E×B effects)
 - ✤ 2-D structures
 - ✤ Only fast electron signal
 - ✤ Intrinsic ion feedback suppression
- Neutron backgrounds
- Optimize single point and double track resolution
- Performance in high magnetic fields
- Demonstrate large system performance with control of systematics
- Endplate design for minimal material

TPC Advances for ILC

Micro-Pattern Gas Chambers for gas amplification at end plate

GEM towers for safe operation (COMPASS)

• 50 µm kapton foil, double sided copper coated
• 75 µm holes, 140 µm pitch
• GEM voltages up to 500 V yield 10⁴ gas amplification

Micromegas for TPC Readout

- asymmetric parallel plate chamber with micromesh
- saturation of Townsend coefficient mild dependence of amplification on gap variations

J. Brau - SNIC 2006 - Sciences and Challenges for Future Detector Development in High Energy Physics

Cherenkov Detection

- Powerful ring imaging detectors for past and present experiments
 - ♥ CRID @ SLD
 - ♥ RICH @ DELPHI
 - ✤ DIRC @ BaBar
- Future
 - **b Dual readout Calorimetry**
 - **BALE Energy Neutrino Interactions G. Varner**
 - **Advances in the development of the Ring Imaging technology**

thick GEMsR. Chechikaerogel radiatorE. Kravchenko

Neutrinos

• Liquid Argon TPC (Icarus)

• Neutrinoless Double beta Decay

eg. EXO (liq. Xe) D. Leonard

o related:

Liquid Noble Gas Calorimeters with High Space Resolution - S. Peleganchuk

- Physics opportunities for the next decade are fundamental to our understanding of the Nature of the Universe ("the Quantum Universe")
- Experimental opportunities beyond LHC and the current experiments should be excellent
- These opportunities bring new and difficult challenges to the experimenter
- Trends in the advances of detector technology promise to provide continued progress in addressing the challenges
- At this conference we will hear the latest progress on many important developments, and their connections to other fields