International Symposium on the Development of Detectors for Particle, Astro-Particle and Synchrotron Radiation Experiments, SLAC, USA, 3-6 April 2006

CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors ... but not just

Dr Renato Turchetta CMOS Sensor Design Group CCLRC - Technology

Outline

Introduction. MAPS for charged particle detection

Results so far

3T-pixel

Pipeline pixels

Digital sensors/pixels

MAPS in an experiment

STAR

Belle

ILC: vertex and calorimetry

Conclusion

CMOS Monolithic Active Pixel Sensor (MAPS)

(Re)-invented at the beginning of '90s: JPL, IMEC, ...

- Standard CMOS technology
- all-in-one detector-connection-readout = *Monolithic*
- small size / greater integration
- Iow power consumption
- radiation resistance
- system-level cost
- Increased functionality
- increased speed (column- or pixel- parallel processing)
- random access (Region-of-Interest ROI readout)

CMOS sensors in digital cameras

Digital intraoral imaging

Digital mammography

Consumer/prosumer Digital cameras

Baseline (minimum) design.

Low noise detection of MIPs first demonstrated in 2001.

Since then, with a number of technologies/epi thickness:

AMS 0.6/14, 0.35/∞, 0.35/14, 0.35/20, AMIS (former MIETEC) 0.35/4, TSMC 0.35/10, 0.25/8, 0.25/∞, UMC 0.18/∞ 0.25/2,

Noise < 10 e- rms

Spatial resolution 1.5 µm

@ 20 μ m pitch, with full analogue readout

Good radiation hardness

Low power

Speed: rolling shutter

can be a limit

IBM

Radiation hardness

Transistors.

Radiation test. Source results

- Test with parametric test sensor RAL_HEPAPS2. Designed in TSMC 0.25/8, inpixel transistors with 0.35equivalent oxide thickness
- Several types of pixels
- Noise seems to increase slightly with dose.
- Signal decreases with dose.
- Leakage current increase only noticeable beyond 10¹⁴ p/cm²

Pipeline pixels

Flexible Active Pixel Sensor (FAPS, RAL): TSMC 0.25/8, 10 memory cell per pixel; 28 transistors per pixel; 3 sub-arrays of 40x40 pixels @ 20 μ m pitch, sampling rate up to 10 MHz. Noise ~ 40 e- rms, single-ended readout

Continuous Acquisition Pixel (CAP, Hawaii): three versions (CAP1/2/3) in TSMC 0.35/8 and 0.25/8, 5 pairs cell/pixel in CAP3 40-50 e- rms single ended \rightarrow 20-25 differential

MIMOSA12 (Strasbourg) in AMS 0.35/14: 4 pairs/pixel

Digital readout

Several imagers designed by RAL with column-parallel ADC: single-slope (10-bit) and successive approximation (up to 14-bit)

- Mimosa 8 (Saclay)
- Test in lab: 55Fe results
 - Pixel noise ~ 15 e-
 - CDS ending each column
 - ⇒ Pixel-to-pixel dispersion ~ 8 e-
- Test beam results (DESY, 5GeV e-)
 - S/N (MPV) ~ 8.5 9.5
 - Efficiency > 98%
 - TSMC 0.25 μm fab. process with ~ 8 μm epitaxial layer
 - Pixel pitch: 25 μ m
 - 3 sub matrices with 3 diode size: 1.2 x 1.2 μm^2 , 1.7 x 1.7 μm^2 , 2.4 x 2.4 μm^2
 - 24 // columns of 128 pixels with 1 discriminator per column
 - 8 analog outputs

SNIC 2006

Column comparator

Temp. = $20^{\circ}C$; r.o. = 40 MHz

Fake Hit rate / pixel / event

Discri S/N cut

In-pixel digitisation

- OPIC (On-Pixel Intelligent CMOS Sensor). Designed by RAL within UK MI3 consortium
- In-pixel ADC (single-slope 8-bit)
- In-pixel TDC
- Data sparsification

Test structure. 3 arrays of 64x72 pixels @ 30 μ m pitch Fabricated in TSMC 0.25/8 PMOS in pixel \rightarrow sub-100% efficiency Starting point for R&D on ILC-ECAL Calice

Image obtained with the sensor working in TDC mode with sparse data scan. White pixels are those which didn't cross threshold

MAPS for STAR

MimoSTAR-2 (France)

- AMS 0.35 μm OPTO. 30 μm pitch
- 2 matrices 64 x 128, JTAG architecture
- Rad. hard structure (based on Mimosa 11)

To be installed in STAR (2006)

⇒ Ionising radiation tolerant pixel validated at temperature up to + 40 °C

⇒ No active cooling needed at int. time ~< O(1 ms)

MimoSTAR-3L in design in AMS 0.35: 200 kpixels, $t_{r.o.} = 2 \text{ ms}$, 2 cm^2

of Detector / layer ~ 32

MAPS for ILC

Vertex: R&D in France (MIMOSA family) and UK (RAL_HEPAPS family)

MIMOSA family: latest is n. 15. Several prototypes with different technologies and pixel architectures: 3T, column-parallel comparator, pipeline pixel. Good S/N, radiation hardness, spatial resolution, detection efficiency, ... demonstrated

RAL_HEPAPS family: latest is n.4. First demonstrator (FAPS) of pipeline architecture. Fast, column-parallel ADC demonstrated within LCFI- CPCCD

RAL_HEPAPS 4: large format. 3 versions, each with 1026x384 pixels (0.4M pixel), 15 μm pitch, 3T pixel. D1: single diode, enclosed geometry transistors. D2: double-diode.
D4: four-diode
ENC <~ 15 e- rms (reset-less)
5 MHz line rate
Rad-hard: > Mrad

ECAL (Calice): R&D just starting in the UK for large area, digital MAPS

Large area sensors

Stitched sensors likely to be needed for ILC: Vertex and ECAL (Calice)

Reticle. Size limited to ~ 2 cm. Reticle is stepped-and repeated \rightarrow gaps between reticles

CCD foundry. Sometimes large chips are required \rightarrow different programming of stepping to have no gap \Leftrightarrow 'stitching'

Driven by design of CMOS sensors as replacement of 35 mm film. At a few foundries, it is now possible to design stitched (seamless) sensors \rightarrow 'waferscale'

Foundry choice rapidly widening

Conclusions

CMOS MAPS first proposed as detectors for particle physics in 1999

100% efficiency detection demonstrated in 2000

Since then, good performance in terms of S/N, detection efficiency, radiation hardness, spatial resolution demonstrated with 3T

New sensors architecture developed: pipeline pixels, digital sensors, digital pixels

R&D for MAPS at Belle and STAR well underway. They could be the first experiments to have a MAPS-based vertex detector

Development at ILC in progress for both Vertex and ECAL. They are likely to need stitched sensors

M. Prydderch

Acknowledgements

M. Barbero and G. Verner, Haiwaii, for CAP and Belle W. Dulinski, Strasbourg, and N. Fourches, Saclay, for MIMOSA

N. Allinson + MI3 collaboration	G. Villani
A. Fant	M. Tvndel
J. Crooks	P. Allport
A. Clark	G. Casse
P. Gasiorek	A. Evans
N. Guerrini	D. Prior
T. Anaxagoras	J. Velthuis
R. Halsall	P. Dauncey
M. Key-Charriere	N. Watson
S. Martin	+ all the others I forgot to mention!
M. French	5

CAP3 – full-sized!

928 x 128 pixels = 118,784 ~4.3M transistors >93% active without active edge processing

CAP3

5 sets CDS pairs

5 metal layers

21

Distribution of signals

From different types of pixels. HEPAPS2

Туре	Specs	S	Ν	S/N
3MOS E	4 diodes	99	4.94	20.1
3MOS C	GAA	87	4.85	18.0
3MOS B	Diode 1.2x1.2	92	3.87	23.8
3MOS A	Diode 3x3	67	3.31	20.3
4MOS C	Lower V_{T}	101	4.14	24.4
4MOS B	Higher V_T	114	4.70	24.2
4MOS A	Reference	111	4.45	25.0

Typical 'Landau distribution

Single pixel S/N dependence on impact point. 1

- S/N varies over pixel between 12 and 4 before irradiation.
- S drops to zero at edges after 10¹⁴ p/cm².

G. Villani (RAL)

Single pixel S/N dependence on impact point. 2

Device simulation. Single diode 15 μ m pixel

Device simulation. 4-diode 15 μ m pixel

- Less variation in S/N varies over pixel before and after irradiation.
- S at edges still usable after 10¹⁵ p/cm².

G. Villani (RAL)

Signal from individual particles

Beta source (Ru106) test results. Sensors HEPAPS2.

Cluster in S/N

Signal spread

FAPS Hit resolution

- Hit Resolution≠spatial resolution!!!
- Take hits found in cell 2
- Reconstruct x and y each cell using Centre-of-Gravity
- Calculate average hit position
- Determine residual position
 for each memory cell
- Hit resolution approximately 1.3 μm

FAPS efficiency estimate

- Find hits in all cells
- Plot max S/N_{pixel} in 3x3 area around expected hit position if hit not found
- Define:

 $Missed = \frac{\#missed \ seed \ cut}{\#seeds \ cell(i-1)}$

 Clearly, strongly dependent on seed cut. Lowering seed cut to 5σ yields inefficiency ranging between 0.08±0.08% and 0.5±0.1%

27

Radiation test

- Irradiated APS2 up to 10¹⁵ p/cm² at CERN.
 - 10¹² p/cm² ILC requirement
 - 2x10¹⁵ p/cm² 10 years ATLAS pixel layer
- Repeat analysis at each dose with same cuts
- Dose (p/cm²) #APS2 0 3 1e11 4 1e12 4 1e13 4 5e13 4 1e14 2 2e14 2 5e14 2 1e15 2

- Seed > 8σ
- Neighbour > 2σ

Radiation test. Leakage current measurements

- Slope is due to leakage current
 - Measure pedestal-reset(time)
 - Fit straight line
 - Plot average slope versus dose
- No significant increase in leakage current.

J. Velthuis (Liv)