

Avalanche Diodes (APD) Detectors: Introduction and Recent Advances*

Alfred Q.R. Baron

Harima RIKEN & SPring-8/JASRI

International Symposium on the Development of Detectors for Particle, Astro-Particle, and Synchrotron Radiation Experiments "SNIC" SLAC, Stanford, April 2006

*Focus on Fast X-Ray Detection

A Change in Scale...

SPring

Compared to the detector effort in high-energy physics, the effort in synchrotron radiation is in its childhood,

... and the APD effort in x-ray scattering is nearly a newborn.

Small efforts: ESRF, BNL, DESY, SPring-8, KEK, (SSRL) & the recent addition of a dedicated technician at ESRF is already a major jump.

Historical

Development in the 60s & 70s (Huth, McIntyre, Webb, Jones at GE & RCA)

Some discussion of a "Solid State Photomultiplier"

(but gain not so high...)

Main utility is high speed (large gain-bandwidth product). Optical Communication, Laser range-finding... & Applications where for some reason a PMT is not suitable Positron Emission Tomography (High Magnetic Field)

Introduced to the x-ray scattering community via Nuclear Resonant Scattering (NRS) of Synchrotron Radiation 1990's

Nuclear Resonant Scattering (NRS)

Carefully Choose the Sample (Gerdau, Rüffer) Build the Right Optics (Faigel, Siddons, Hastings) Use the Right Detector (Kishimoto, Baron)

(1995)

Continues to provide a challenge for detectors...

APD Research Applications

Fast photon counting: Diffraction, Imaging 1 MHz Easy, ~100 MHz Possible

Time resolved detection: NRS, XIFS ~1 ns Easy ~0.1 ns Possible

Places where a PMT is not possible...

Magnetic Fields Size Constraints Power Requirements

Note one large application (>10⁵ devices) is for the CMS Calorimeter for scintillator readout in a 4T field (Dieters, Renker)

Geiger vs Linear Operation

Linear Operation:

Diode biased below breakdown. Well defined small-signal gain.

Geiger Operation:

Diode biased above breakdown. Single electron leads to run-away gain until quenched. Noisy: 10²-10⁵ cps/channel

(also Poster/Abs 143, Renker)

SPring. Structures "Reach Through" "Beveled Edge" "Reverse" depleted -depleted p+ p+ n+ p, depleted -X-Ray π e π X-Ray n+ e X-Ray •0 ph h E E E

Narrow Gain Region Medium Voltage 50-700V Large Drift Region Modest Gains (<200) Also one-sided epitaxial & diffused & back entry...

AQRB, April, 2006

Wide Gain Region High Voltage (1-2 kV) High Gains Possible Larger Areas Possible Also "Planar"

Narrow Gain Region Medium Voltage <500V Small Drift Region Modest Gains (<200)

-

Some Single-Element Devices

Company	Model	Size	Operating Voltage	Active Thickness (μm)	Capacitance pF/mm ² (a)	Gain (a)	Time Resolution FWHM / Tail (ns)	_
Perkin-Elmer (PKI /EG&G)	C30626	$5x5 \text{ mm}^2$ & smaller	300-400	~110	1.2	50-150	~1/3	
	C30703	$10 \times 10 \text{ mm}^2$	350-450	~110	1.2	50-150	~1 / 4	
	Prototype (b)	$10x10 \text{ mm}^2$:	350-450	~180	< 1	50-150	1.7 / 7	Reliable
	C30719 (b) Reverse	$5x5 \text{ mm}^2$	350-450	< 10	-	~50	0.17 / 2-3 (c)	
Hamamatsu	SPL2625 (b)	ϕ 3 mm 3x5 mm ²	500-700	~ 130	~1	30-50	1.3 / 3	
	S238X	φ0.2 to 5 mm	~150	~ 30	6	50-100	0.3 / 5 (c)	Mostly
	S534X	φ1,35 mm	~150	~ 10	16	~50	~0.08 / <2	NUSTR
	S534X LC (b)	φ1, 3, 5 mm	~250	~ 20	5	~50	~0.15 / <2	Reliable
	S8644-XXK Reverse	$\phi 0.2 \text{ to } 5 \text{ mm}$ & 5x5 mm ² &10x10 mm ²	~400	~ 7	3	~50	~0.25 / <2	
Advanced Photonix, Inc. (API)	LAAPD Beveled Edge	φ3 to 16 mm	~2000	30-50	~1	~200	~0.4 />5 (c)	Not So Reliable*
Radiation Monitoring Devices (RMD)	S0814 S1315 Beveled Edge	$\frac{8x8 \text{ mm}^2}{13x13 \text{ mm}^2}$	~1700	30-50	~1?	300-2000	~0.4 / >10 (c)	Not So Reliable*
Ν	Note: ((1) <i>Not</i> extr 2) Device D	emely car	eful cond	itions.		*,	As of ~1998
pril, 2006	(3) CMS exp	pects >99%	% reliabili	ty (after se	election)	for 10 years	

AQRB

Not **YET** integrated... SM Technology & Modular (NIM) electronics

Typical Scope Traces

Leading edge (rise time) is governed by carrier transport in the device

Trailing edge by diode capacitance and amplifier impedance

Best case ~ 0.6 to 0.9 ns FWHM

X-Ray Time Resolution

As x-rays penetrate and tend to uniformly illuminate a device, the FWHM of the time resolution is mostly determined by the thickness of the drift region

~ 10 ps/um near saturation

Tails determined by the field profiles near the surface

Note use of leading edge discriminator.

Best Time Resolution

Best FWHM: 75 ps ~ 10 um Device, Hamamatsu

Good Tail: < 2 ns at $1/10^5$

Best Tail: ~1.4 ns at 1/10⁵ ~30 um Device, PKI

SPring.

(Work in progress, Deschaux, et al)

Note: Geiger Mode operation of small area devices has shown ~20 to 30 ps nominal resolution (Cova, Lacaita)

Fast Counting

SPring.

Simplest "Non-Paralyzable" Model

n = True Rate, m = Measured Rate

T = System Dead Time T = 3 to 20 ns

Source + APD + Discriminator + Counter

mT = 0.1 (20 MHz for T=5 ns) -> Can correct to ~1%

For mT > 0.1 -> MUST Calibrate!

Pulse Height Distribution

(X-Rays and Fast Electronics)

Contributions: Amplifier Noise APD Gain Noise Penetration into gain region

Typically 20-30% for thicker devices.

Base-line shift at high rates (AC-Coupling). Better for lower capacitance devices.

Note: Slow Electronics, Low Gains, Cooling (-20C) -> resolution ~5% possible (Kishimoto)

Other Points

SPring- 8

Low T operation is possible - increased gain and T-sensitivity

- ~ 40K with API Beveled Edge (Yang)
- ~ 100K with Ham. Rev. APD (Dorokhov)

Electron Detection is possible - note radiation damage! Hamamatsu Devices with special surface (Kishimoto) With Gain - VAPD (Kushman)

Progress toward a more realistic PMT replacement?

Many (10³/mm²) Geiger mode devices to keep dynamic range & high gain (Buzhan, Sadygov) (Next Talk, Otte and poster/ abs 126: Yokoyama)

APD Arrays

Company	Device Structure	Туре	Array Pixels	Pixel Size	Dead Space (mm)	Reference
Perkin-Elmer (PKI /EG&G)	C30985 (a)	М	1 x 25	~0.4 mm x 0.3 mm pitch	~0.07	Webb & McIntyre, 1984
	(a)	М	1 x 32	0.35 mm x 0.15 mm pitch	~0.05	Trakalo, et al., 1987
	(a)	М	1 x 128	2 mm x 0.15 mm pitch	~0.05	Webb & Dion, 1991
Hamamatsu	S238X	М	1 x 16	ϕ 1 or 1 x 1 mm ²	0.1	Hara, et al., 1996
	(b)	М	1 x 32	$3.8 \times 0.5 \text{ mm}^2$	Var.	Nonaka, et al., 1996
	S534X LC	М	1 x 16	$2.5 \text{ x} 1 \text{ mm}^2$	0.1	Baron, et al., 2004
	SPL2625	А	2 x16 & 2 x 4	$3 \times 5 \text{ mm}^2$	1	Kishimoto, et al., 2004
	50 µm (c)	М	2 x 4	$1 \ge 0.5 \text{ mm}^2$	0.1	Kishimoto, et al., 2004
	S5343 LC	R	1 x 10	φ 3	3 or 0.1	This work.
Advanced	Bev. Edge	М	8 x 8	$1.3 \times 1.3 \text{ mm}^2$	0	Gramsch, <i>et al.</i> , 1993
(API)	Grooved			0.5 x 0.5 mm	0	Gramscn, <i>et al.</i> , 1994
Radiation	Plan. Bev.	М	4 x 4	$2.1 \text{ x } 2.1 \text{ mm}^2$	0.4	Farrell, et al., 2000
Monitoring	Grooved		8 x 8	$13 \text{ x} 13 \text{ mm}^2$	0.4	
Devices (RMD)	Plan. Bev Grooved.	М	14 x14	2 x 2 mm ² Pitch	0.1	Shah, et al., 2001
	Plan. Bev Anger. (d)	М	1 (d)	$14 \text{ x } 14 \text{ mm}^2$ (d)	0	Levine, et al., 2004

M=Monolithic A=Assembled R=Replaceable

Note: Still relatively small numbers of pixels

ns Linear Array

(Webb & McIntyre, 1984 - PKI C30985)

Linear Array, 25 elements, 0.3 mm pitch ~ 100 um thick, ~1 ns resolution

Segmented cathode with bump bonding.

~1 ns resolution

Fast Linear Array

How can one keep good (200 ps) time resolution and high efficiency?

-> Grazing Incidence

16 Elements, 1.1 mm pitch $1 \times 2.5 \text{ mm}^2 \times 20 \text{ um thick}$

2 Degree grazing angle -> 0.6 × 2.5 mm Acceptance, 0.6 mm Thick Efficiency: ~1% -> 17 %

Magnetic Relaxation in Spin-Ice (Sutter et al)

SPring.

Note: Device stability is an issue.

Modular Array

SPring.

Now Under Construction - SPring-8 - ESRF Collaboration

Similar concept to the "Fast Array"

Grazing incidence gets you good (200 ps) time resolution and good x-ray stopping power

But Modular: Element replacement possible. Amplifier design simplified.

8 Elements, ϕ 3mm x 20 um, incline at 2 degrees -> ~ 0.8 x 2.0 mm² x 0.6 mm thick

The Next Step: Integration

Discussion/Collaboration: ESRF, APS, SPring-8, DESY, KEK, &..

First Goal (?): Fast (us) framing detector.

A Properly Instrumented APD Array Pixel Size: ~ 0.3 × 0.3 mm² × 0.2 mm thick (Efficient and ~ 2 ns time resolution) ~10³ channels (1 cm²) at first -> 10⁵

Utility: Fast imaging, Stroboscopic Measurements, XPCS With different electronics, NRS: NSAXS, SRPAC

SPring. 8

Fast Framing Detector

1. The Array Device -> Not so hard.

Question: On board histogramming for stroboscopic work?

Modified Electronic for NRS

APD Collaborators

SPring.

KEK: S. Kishimoto

ESRF: T. Deschaux, R. Rüffer

SPring-8: T. Ishikawa (& T. Kudo)

Packaged Fast Counting Systems

BNL Kuczewski, Siddons

ESRF Rigal, Morse, et al.