Superconducting Transition Edge Sensors for Particle Astrophysics and Cosmology

International Symposium on the Development of Detectors for Particle, Astro-Particle and Synchrotron Radiation Experiments

SLAC, Stanford University, CA, April 4, 2006

Blas Cabrera - Stanford University & KIPAC

CDMS Detector Fabrication: Paul Brink, Astrid Tomada, Larry Novak, Matt Pyle (collaborators: NIST, Boulder, Kent Irwin; UCD, Martin Huber) Optical Detectors: Roger Romani, Jen Burney, TJ Bay, Joelle Barral (collaborators: NIST, Boulder, Sae Woo Nam, Aaron Miller) X-Ray Detectors: Steve Kahn, Steve Leman, Bill Craig (collaborators: Lockheed, Palo Alto, Bob Stern, Steve Deiker, Dennis Martinez)

SNIC - TES Particle Astro & Cosmo

Page 1

Overview of TES applications (*this talk)

- CMB with polarization: A. Lee (UCB) and A. Lange (Caltech)
- Sub-mm astronomy: SCUBA 2: more than 10,000 TES pixels
 - NIST delivering TES arrays
- *Near IR/optical/near UV ground & space: Stanford/NIST
 - casualty of NASA downscaling R&D for future instruments
- X-Ray astrophysics: NIST/Goddard; Joel Ullom (next talk)
- *X-Ray macropixel: Stanford/Lockheed/NIST
- Dark matter searches:
 - *CDMS collaboration: TES sensors on Ge and Si crystals
 - *SuperCDMS future; Walter Ogburn (#147/150 poster)
 - CRESST search uses SPT with SQUID readout
 - Large negative ion TCP: Jeff Martoff (#188 poster)

TES Single Photon Detectors

• Demonstrated Sensitivity with TES

- NIST Mo/Cu TESs 2.37 eV FWHM @ 6 keV
- Goddard Mo/Au TES 3.7 eV FWHM @ 3.3 keV
- NIST Mo/Cu TES 2.0 eV FWHM @ 1.5 keV
- Stanford W TES 0.12 eV FWHM @ 1.5 eV

• A factor of 2-3 improvement is likely with an additional factor of 4 to the fundamental limit

Superconducting Transition Edge Sensors

• Steep Resistive Supeconducting Transition

of transition width

• W T_c ~ 70 mK

• Voltage bias is intrinsically stable

The Joule heating produced by bias

$$P_{J} = \frac{V_{B}^{2}}{R} \implies P_{J} \downarrow \text{ when } R \uparrow$$

is stable whereas for current bias

$$P_{\rm J} = I_{\rm B}^2 R \implies P_{\rm J} \uparrow \text{ when } R \uparrow$$

which is intrinsically unstable

Three Types of Detectors

- Direct absorption of photon in TES (e. g., IR-optical-UV photons)
- Photon absorber in electical contact with TES (e. g., x-ray detectors)
- Large mass absorbers generate phonons which are converted into quasiparticles which diffuse to the TES (e. g., dark matter detectors)

Science Objectives for Optical/UV TESs

- Time variable sources
 - White dwarf binaries, neutron stars, pulsars
 - Black hole binaries, and supernovae
- Distant galaxies
 - Direct redshift measurements for faint galaxies
 - Highest photon efficiency
- Imaging UV spectroscopy
 - R~300 for nearby sources
 - Search for ionized clouds as dark baryonic matter

Optical Photon Detectors

• Demonstration of W TES sensitivity

McDonald Observatory 107" Demonstration

Crab pulsar

SNIC - TES Particle Astro & Cosmo

Page 11

Crab Pulsar Data from McDonald 107"

SNIC - TES Particle Astro & Cosmo

Blas Cabrera - Stanford University

Infrared Loading a Challenge

1010

Block ~2 μ m and • ~100 μ m using sapphire, KG-3, KG-5, acrylic, and grid filters

New 8 x 8 array

• Array of 24 μ m square pixels on 36 μ m centers

Improve PSF with Reflection Mask

Reflection mask covers rails and reflects photons that would have hit the rails back onto the active pixels.

SNIC - TES Particle Astro & Cosmo

Page 17

Blas Cabrera - Stanford University

Large Area TES X-Ray Detectors

- Figure of merit is etendue given by: $A\Omega = 0.012 d^2 \text{ cm}^2\text{-sr}$, where the detector diameter *d* is in cm.
- Square detecter 25 mm on an edge with 1 mm square pixels and with an energy resolution of 4 eV FWHM would enable:
 - Search for missing baryons in warm-hot interstellar medium (WHIM)
 - Surveys of clusters and groups of galaxies as a probe of the growth of structure
- A number of efforts to multiplex large numbers of single pixels time domain and frequency domain schemes
- We are developing macropixel to cover large areas

Expanding universe - simulations and data

Huge Advances from Imaging TES

- XRS microcalorimeter diffuse background rocket flight versus state-of-the-art CCD over similar energy
- Astro E2 XRS dewar failure

Best Single Pixel X-Ray Resolution

• $R = E/\Delta E = 2,490$

Sunday, Sep 12, 2004 12:39:28 PM

Macropixel Concept

- Demonstration with 300 μ m thick Si wafer
- X-rays incident on backside converting to phonons
- Phonon absorbed by TES sensors on front side

Macropixel Sensitivity

- Response from ⁵⁵Fe x-rays across macropixel
- Will improve using intrinsic Ge

Macropixel Concept

- Simultaneous energy and position resolution
- Inset is raw data and plot after position correction

SNIC - TES Particle Astro & Cosmo

Blas Cabrera - Stanford University

ZIP Phonon Position Sensitivity

SNIC - TES Particle Astro & Cosmo

Blas Cabrera - Stanford University

SNIC - TES Particle Astro & Cosmo

Page 28

ST1&2 Soudan -> SNOLab like Tower 1 SUF -> Soudan

• Tower 1 (4 Ge & 2 Si) at SUF then at Soudan

Improvements in Surface Event Rejection

- Significant improvements in our analysis of phonon timing information
 - Surface event rejection improved by x3; kept pace with exposure increase!
 - Cuts are set from calibration data (blind analysis)
- We still have more discrimination power available as needed
 - Can continue to keep backgrounds < 1 event as more data accumulates
 - This is the real strength of CDMS detectors!

CDMS-II SI Results & Reach with five Towers

About to Operate Five Towers in Soudan

SNIC - TES Particle Astro & Cosmo

Blas Cabrera - Stanford University

SUF (17 mwe), Soudan (2090 mwe), & SNOLab (6060 mwe)

- At SUF
 - 17 mwe
 - 0.5 n/d/kg
- At Soudan
 - 2090 mwe
 - 0.8 n/y/kg
- At SNOLab
 - 6060 mwe
 - -1 n/y/ton

SuperCDMS at SNOLab

★ SuperCDMS is approved to be sited at SNOLab New lab space (under construction - ready in 2007) ★ We have received strong interest from Canadian collaborators - Queens ... **CREUSER POUR TROUVER... L'EXCELLENCE** Sudbury, Ont. CA Sudbury Neutron Obs.

Modifications for 1" processing

sputtering (design complete parts in shop)

spinner (ready) start first Ge 1" thick dry etch

(design

complete)

fabrication in Jan 06

aligner (ready)

SNIC - TES Particle Astro & Cosmo

Page 37

Blas Cabrera - Stanford University

Does the LHC supplant Direct Detection?

Summary

- TES detectors are now a well established technology and are at the forefront of sensitivity for all energy scales including optical, x-ray and dark matter searches.
- IR-optical-UV detectors have 0.15 eV FWHM with counting rates up to 10 kHz for single pixels, for a 6 X 6 array. Exciting technology for ground based, long duration balloon instruments from near IR well into UV and satellite missions from 10 μ m to 100 nm.
- Large area macropixel x-ray arrays open new science fronts to search for missing baryons as WHIM and study large scale structure with galaxy cluster surveys.
- Dark matter search (CDMS) leads field by factor of ten and is exploring very interesting region of supersymmetry. Another factor of ten with 5 Towers then SuperCDMS.