Cryogenic Detectors for Astrophysics Far-IR, Submillimeter, and CMB

Harvey Moseley NASA/GSFC

Science Objectives

 Test Inflationary models, particle physics at the highest energies
 Inflation should leave imprint in polarization of CMB (B-mode polarization), its magnitude related to energy scale of inflation.

Test models for structure formation in the early universe

Galaxy clustering and correlations driven by dark matter

CMB polarization is a unique probe of Inflation

WMAP Results Important Step in Understanding CMB Polarization

- WMAP has detected Emode polarization at large angles, and sets significant limits on B-Mode
- Spectral slope is significant less than 1; theorists see smoking gun of inflation?
 - Resolution will require
 B-Mode measurement

The High z Universe is Easily Observed at Sub-mm and mm

- The Inverse K-correction results in very small variation of galaxy brightness with redshift.
- Multicolor imaging or spectroscopy are essential for sorting the sources by z

Moseley- 5

Submillimeter/MM Surveys Show Evolution of Early Universe

- Surveys can determine star formation rate in the early universe.
- With adequate spectroscopy, can be used to track growth of structure

Moseley- 6

Eisenstein et al.

Smail et al.

Observing Facilities

Sensitivity

- Thermal detectors operating at 0.1 K can reach background limit with margin over the peak of the CMB
 - Cryo cooling to 0.1 K is well developed
 - Raw sensitivity is easily reached by semiconducting and TES bolometers
- STJs, KIDS, can, in principle, reach similar sensitivity at 0.3 K

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Both Objectives Require Large Arrays of High Performance Detectors

- Sensitivity limits set by photon statistics from cosmic backgrounds.
 - Present generation of bolometers operating near 0.1 K can reach background limits for imaging
- Both objectives require large arrays of such detectors to do large area surveys in practical times
 - CMBPol -> ~ 1000 channels of background limited detectors in a high performance polarimeter
 - SMM Galaxy survey ~ 1000's of detectors for imaging, higher sensitivity detectors for spectroscopy; spectroscopy detectors need significant development

History

Evolution of GSFC Bolometers

<text><text><image/><image/><text></text></text></text>		-FIRAS andmade – <i>mid 1980's</i>	
<section-header><text><text><text><list-item><list-item></list-item></list-item></text></text></text></section-header>		QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	
SHARC I 24 pixels, micromachined – early 1990's	KAO s 24 pixels	pectrometer handmade – 1987	
	SHAR(24 pixels	C , micromachined – <i>early 1990's</i>	

Examples of Detector Arrays

Spitzer/MIPS 100 Element Flight Array (U. of Arizona) 160µm SOFIA/HAWC 384 Element Flight Array (GSFC) 50-450µm Herschel/SPIRE 144 Element Prototype Array (Caltech/JPL) 200-1000µm

Development Process The Path to Kilopixel Arrays and Beyond

Choice of Architecture

- Radiation Coupling
- Level of integration
- EM Modeling of coupling, filtering, transmission, detection
- Thermal/Mechanical design of detector
 - Mather (1982, 1984), Irwin (1996)
- Fabrication and test of components
- Integration
- Test of system

Microstrip Components for CMBPol

NASA GSFC

• Light coupling method:

Platelet feed horn & planar OMT light collection concept (above). Test of stacked thru-wafer Si waveguides (top right). Membranes over Si waveguides (right).

• On-chip modulation:

Predicted behavior (left) and photo (right) of prototype millimeter-wave microstrip switch device based on variable inductance of Josephson junction.

• Laboratory tests with VNA:

• Microstrip bandpass filters:

Bandpass filters designed for three measurement bands with low high frequency leakage. 4/6/2006

SNIC

Chip with 100 GHz waveguide probe antennas (above) fits in split block (top right). Package with K-connectors allows tests up to 40 GHz (right).

WOSeley-14

Mechanical Characterization

• Mechanical-Amplifier device for measurement of mechanical properties of detector materials (Si Nitride in this case)

WR02.2 Platelet Feed Array:

Platelet Feed Array: λ = 0.9 mm

Return Loss for elements sampled better than 20 dB across test band...

QuiickTime[™] and a Video decompressor are needed to see this picture.

(slots are at $y = \pm 0.25$, -0.5 < x < 0.5, and have width 0.04)

SNÍC

x-axis, along the slots

y-axis, perpendicular to slots

Moseley-17

VNA/Microstrip Test Facility

Waveguide/Microstrip Probe Superconducting Test Capability Rapid characterization with VNA

REFERNCE: U-yen, K., Wollack, E.J., Doiron, T., Papapolymerou, J., Laskar, J., "A Planar Bandpass Filter Design with Extended Rejection Bandwidth Using Double Split-end Stepped Impedance Resonators," 2006, IEEE Microwave Methods and Techniques, Vol. 55, No. 3, pp. 1237-1244.

Normal metal quarter-wave SIR (Stepped Impedance Resonator) filter design prototype with large stop band. Frequency response of $dB|S_{21}|$ (solid line) and $dB|S_{11}|$ (dash line) of filter with 3 transmission zeros placed around the lowest spurious frequency (at 5.65GHz) and 4 transmission zeros place around the second lowest frequency (at 8.47GHz).

4/6/2006

NASA

GSFC

Characterization

SQUID Amplifiers

- SQUID amplifiers are well-matched to TES detectors
- Operate at detector temperature
- Low noise makes multiplexing feasible

GSFC-NIST Collaboration

Integrating Detector to SQUID Mux

 Following the SCUBA II development, we have extended the bump bonding to allow one-sided bumps to thin substrates

Transition Edge Sensor Bolometers

 One highly credible approach to meeting future pixel count and sensitivity requirements is with superconducting transition edge sensor (TES) bolometers.

Characterization

Detector I-V Curves

Normal region at high voltage provides ohmic definition of zero point

S/C region is hyperbolic

Characterization

Detector Noise

Noise very close to theoretical limit!

TES Pop-up Bolometer Array

1 x 32 TES arrays have been produced for ACT; device characterization in progress.

ACT - Atacama Cosmology Telescope^{SFC}

U. Wales - Cardiff, U. Colorado, Columbia, CUNY, Haverford, NASA/GSFC, NIST, U. Penn., <u>Princeton</u>, Rutgers, UBC, U. de Catolica, U. Mass. - Amherst, U. Toronto

Observations:

•CMB: I>1000
•Cluster (SZ, KSZ
•X-rays, & optical)
•Diffuse SZ
•OV
•Lensing

ACT camera will consist of 3 1024-element arrays from GSFC

Science:

4/6/2006

Growth of structure
Eqn. of state
Neutrino mass
Ionization history
Power spectrum

U.Pennsylvania, NASA/GSFC, NIST, NRAQ. U. Wales - Cardiff

- First NRAO bolometer camera
- Sensitivity ~500µJy in 1 s
- Great for extragalactic surveys very sensitive
- Can do amazing Galactic science high resolution

- 3.3mm wavelength, 8x8 array
- Features 64 pixels
 = 32" x 32" FOV, with 8" resolution

4/6/2006

NASA

GSFC

Goddard/IRAM 2mm Camera "GISMO"

- Hybrid bolometer/readout camera
- Sensitivity ~1mJy in 1 min on 10 sq. arcmin FOV
- Great for extragalactic followup high-z instrument
- Can do amazing Galactic science rapid mapping

- 2mm wavelength, 8x16 array
- Features 128
 pixels
 = 2.2' x 4.4' FOV,

8x8 prototype array

Above: IRAM 30m telescope Below: enlargement of pixels

NASA

Summary

- Highly integrated arrays of kilopixels of background limited detectors are required to address the studies of CMB polarization and to characterize the epoch of initial star formation
- Elements of the system design are generally understood well enough to optimize analytically and produce the desired component
 - Exceptions:
 - TES noise not understood in a fundamental way
 - Thermal conductance in small structures still determined by iteration
- Overall thermal/mechanical design must be carefully done
- Completing this next generation of detector is within technical reach
 - Build now, or wait for perfection?
 - Large engineering project, needs concerted effort